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SECTION I

INTRODUCTION

The progress and results achieved on this basic research program are

sumarized herein. The purpose of the research program is to study the

applicatioL of near-field techniques to characterize the radiation and
coupling characteristics ef wideband Cw or pulsed radirtors. Out-of-band

as well as in-band situations are of interest and both situations are

included in the study. V

Tue radiation pattern of an antenna can, in principle, be calculated

by conventional deterministic analysis based on a knowledge of all system

variables. The feed network, however, can support multi-mode energy

propagation at out-of-band frequencies. For example, energy can be

propagated in the 18 different modes delineated in Fisure 1-1 in

standard WR-284 S-band waveguide at the out-of-band ftequency of 10-0

GHz. Furthermore, all of the modes whose second index is non-zero have

an electric field component polarized orthogonal to the dominant in-

band TE1 0 mode. The electric fields for the first 5 modes are depicted

schemtically in Figure 1-2.

Calculation of the relative phases and amplitudes of the different

modes requires a detailed knowledge of the feed network. This is

generally a very difficult boundary value problem. Further, the

coefficients of the modes will be quite sensitive to minor electrical

and mechanical variations in the feed network, especially those

containing active devices, so that nominally identical systems can

distinctly different out-of-band patterns. This characteristic

out-of-band pattern sensicivity is evident from experimental and

theoretical studies V_'-7]. In order to account for these seemingly

random effects, the cut-of-band mode excitation coefficients may be

treated as random variables. Treatment of these modal coefficients as

randoc variables serves a dual purpose. First, it allows the analysis

of radiation patterns to proceed independent of the feed structure

(wlich may vary between otherwise identical antennas). Second, it

leads to statistical equations that can ac-ount for variations in

fabrication and excitation of the nominal antenna.

]1
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FREQ. (GHzQ) MODES j

10.0- 22-TE E TM
41-TE & TM
12-TE a TM

9.0- 02 -TE

--- 40-TE
8.0--

80-31-TE 8 TM

7.0

a 30-TE
6.0 "6-21-TE 8 TM

5.0 11-II-TE a TM

----01 -TE

4.0 20-TE

3.0-

2.0 -of, 1 -TE

2.0-
Flgure 1-1. tiagram depicting the allowed hIgher order modes versus

frequency for WI-284 S-band rectanguLar vaveguide.
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(a) TE, 0 MODE (b) TEp0 MD

(C) TEO, MODE (d) TE,1 MODE

(e) TM5 MODE

Figure 1-2. Sketches depicting the transverse electric field- for the
indicated higher-order modes in rectangi61ar vaveguide.
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Consequently, statistical analysis techniques are needed for out-

of-band characterization since it is impractical, or perhaps

impossible, to solve the electromagnetic boundary value problems for

the myriad reflector and phased array feed systems encountered in

practice. Statistical techniques and concepts can also be employed to

orovide succinct ENC descriptions of essentially "deterministic" in-

band wideband or pulsed radiators. Consequently, a considerable effort

hac been devoted to statistical characterization of videband radiators.

The research program is divided into four major tasks. The four

tasks are as follows.

Task 1. Provide a near-field methodology to characterize

electromagnetic emitter radiation patterns at in-band and out-of-band

frequencies for wide bandwidth radiators. The objective cf this task

is to develop the appropriate tbeory and equations based on statistical

analysis techniques for efficient characterization of wideband

radiators.

The objective of Task I was achieved via the following

accomplishments:

(a) The theory and equstions were developed for both
in-band and out-of-band 'requencies for deriving
statistical average far-Hioid patterns from wide-band
or pulsed near-field measurements.

(b) Based upon the theoretical studies, methods of efficiently
characterizing both wideband continuous-wave and pulsed
radiators using near-fi ld measurement techniques were
devised.

(c) Based upon the theoretical studies, a numerical aimulation
which is applicable to various antenna types, such as
reflector and pbased-array antennas was performed to
demonstrate that valid statistical fac-field pattern
distributions can be obtained from near-field meas'rements.

Task 2. Theoretically relate the radiation pattern

characterization to tbe basic data needed for efficient optimization

analysis of electromagnetic spectrum ucage. The objective of this task

is to relate the near-field derived videband antenna characterization

to antenna coupling of antenna systems which co-exist in the same EM

4



envhiooment. This objective was achieved by the following
accomplishments:

'(a) The theory and equations were developed for analyzing

the coupling between co-sited transmitting and
receiving systems for cobinstions of videband
transmitting antenna s, narrowband-harmonic transmitting
antennas, and both wideband and narrowbacd-harmonic
receiving antennas.

(b) Based upon the theoretical studi'.s, the near-field
derived data required for efficient E spectrum usage
optimization were defined and employed in
numerical simulations to demonetrate application to
EN spectrum usage analysis.

Task 3. Provide the methodology to assess the effects of system

devices (i.e., higher-order mode generation) on the radiation pattern.

The objectives of this task are (1) to determine F method whereby

* the pattern effect$ of higher-order .modes which are generated by system

devices at out-of-band frequencies can be assessed and (2) to study the

* feabibility of identifying he modal content of at, out-of-br d feed

system from measured d-ta. These objectives were achieved by the

following accomolishments.

(a) Equations were derived during Task I and Task 2
to permit the out-of-band radiation pattern
statistic: to be computed from a knowledge of
the systeK device statistics which describe the
higher-order mode generation and propagation.

(b) Theory and equations for identifying the higher-order
mode statistic5 of system devices through
utilization of videband or pulsed near-field
measurements were derived.

Because the first objective for this task was essentially achieved

as a result of the work on Tasks 1 and 2, the scope of the effort on

this task was expanded to include a brief analytical study of the out-

of-band characteristics cf three common waveguide components. The

three waveguide devicea studied are (1) a coax-to-vaveguide adapter,

(2) radial bends, and (3) a ferrite phase shifter.

i
5
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Task 4. Investigate the impact of site effecas on the near-field

antenna analysis technology.

The objective of this task is to extend the existing mttuochromatic

spectrum scattering matrix analysis to study antenna sitint eftects on

the wideband and out-of-band performance of radiating systems. This

objective was achieved by the following accomplishments.

(a) A theoretical study was performed to investigat2
techniques and derive the equations for extending
the existing monochromatic spectrum scattering
mat-ix theory to analyze site effects over
wide frequency bandwidths.

(b) Based upon the results of the theoretical study,
a numerical simulation of the site effects on the
wideband in-band and out-of-band performance
of a radiating system was performed.

All of the objecti-es set forth in the task statements were

successfully achieved. The salient results of the research work for

each task are successively presented and discussed in Sections II

It-rough V. Most of the important results for Task I were previously

presented in the Interim Technical Reports No. 1 and No. 2 1 4,5].

Similarly, the main results for Task 2 '-ere included in Interim

Technical Report No. 2. Abbreviated versions of the previously

reported results for Tasks I and 2 are contained in Section II and

Section III, respectively, along with discussions of new or additional

results. Results for Tasks 3 and 4 are contained in Sections IV and V,

respectively. Conclusions and recomendations based on the entire

research program are presented in Section VI.

6



SECTION II

THEORY AND TECHNIQUES FOR WIDEBAND
ANTENNA PATTERN CHARACTERIZATICN

A. Introduction

The theory and equations were developed for characterizing the

radiation patterns of wideband cw or pulsed antennas over both in-band

and out-of-band frequency intervals from measured data collected via

near-field measurement techniques. The results are applicable to

either phased array or reflector antennas. Numerical simulations were

performed for (1) a 20-element out-of-band waveguide phased array with

no inter-element coupling and (2) 3-element and 9-element wire arrays

with inter-element coupling. The effect of statistical correlations of

the near-field data was studied and methods for handling correlation

effects were derived. Useful approximations for the probability

density function for the radiated power pattern statistics for

correlated sources were also identified.

The key results obtAined via the Task 1 efforts may be summarized

as follows:

(1) The statistical average patterns and standard deviations at
selected frequencies can provide a very succinct engineering
description of the important EMC characteristics of wideband
CW multimoding antennas. The statistical average patterns
and standard deviations are a practical alternative to the
comparatively more expensive and cumbersome Monte Carlo
simulations.

(2) The statistical average pattern for a given frequency may
be computed from a knowledge of the following near-field
statistical parameters:

(a) statistical average value of the electric field at all
near-field measurement points,

(b) the standard deviation of the electric field at all
measurement points, and

(c) the covariance functions for the electric fields at
all different near-field measurement points.

(3) The statistical average pattern versus time for a pulsed
system depends on all of the above near-field statistical
parameters listed in Item 2, and the following far-field
statistical parameters:

7



(a) the statistical average value of the far-field
electric field at all frequencies in the frequency
band,

(b) the standard deviation of the far-field electric

field at all frequencies in the frequency band, and

(c) the covariance functions of the electric field at
all different frequencies in the frequency band.

However, the far-field statistical parameters listed above
can be computed from the near-field statistical parameters.
Thus, pulsed antennas characterization does not require
knowledge of any additional statistical near-field data.

(4) The probability density function (p.d.f.) for the far-field

electric fields of correlated random sources or scatterers

can be accurately approximated for most antenna or scattering

problems via the use of Nakagami's p.d.f. and linear operator

theory. A less accurate but relatively simple expression
for the p.d.f. was also derived that is euitable for certain
engineering applications.

These results imply that the fundamental technical requirement for

employing near-field techniques to describe wideband CW oc pulsed

antenna radiation is that one be able to compute the statistical

average far-field power pattern versus frequency from the measured

near-field data. As stated in Item 2, this requires a knowledge of the

average electric field and the standard deviation at each sample point

and the covariance fuaction at all different measurement points (cross-

covariance). Only the cross-covariance function presents a significant

measurement problem. The accuracy and feasibility of the near-field

measurement technique for wideband out-of-band antennas depends on

whether the covariance functions can be suitably determined.

Accordingly, considerable effort was devoted to studying the covariance

functions and their effect on accuracy, time ano cost. The results of

this effort are presented and discussed in subsection C. In

particular, the theoretical and numerical analyses are presented for a

linear array of wire elements. The theory and equations for a two

dimensionel array of wire elements involve no new concepts.

Corresponding theoretical and numerical analyses of an array of

multimoding out-of-band waveguide elements can also be performed by

including intermodal correlations in the analysis.

8



B. Frequency Domain Analysis

The analysis was conducted initially for the linear array of

waveguide etements depicted in Figure 2-1. The array is assumed to be

either pulsed or operated over a finite, frequency band. The frequency

spectrun in assumed to contain some components which can be propigated

in i;gher-crder mode field configurations in the waveguide elements. A

convenient starting point in the analysis is to first write down the

appropriate equations for a non-random antenna measurement situation.

The analysis of randomly-excited antennas can then subsequently be

conducted based on the initially deterministic equations and

statistical analysis techniques.

1. Basic Equations

The electric field produced on the near-field measurement

plane is written as the superposition of the radiation fields of the

individual element radiators. It is assumed that the measurement plane

is located at a distance x that is > the far-field distance of each

element radiator. A transverse field component, say the vertically

polarized component Eq(w), produced at the measurement point q is then

K exp -j ! rqEq(W) = a K (w)h K (W ) c (2-1)

qK Z. k'9q r Z

where c is the speed of light in vacuum, w = 2wf, and where

K
a£ = complex mode coefficient for the Kth mode in the

P th element,

K
hZ = vertically polarized far-field electric

field pattern of the Kth mode of the
kth element,

= angular location of the qth measurement point
q with respect to the center of the kth element,

r Z - magnitude of the radius vector from the center
of the Zth element to the qth measurement

point.

The plots of amplitude and phase shown near the bottom of Figure 1

depict either (1) the electric field versus frequency as the array

input signal is swept over a specified frequency band or (2) the

complex frequency spectrum of a radiated pulse. In either case,

different rcsults would be obtained at different measurement points.

9
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Figure 2-1. Sketch depicting a linear array of waveguide elements and
hypothetical out-of-band amplitude and phase responses
at a near-field measurement point.
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The frequency spectrum of the time pulse is obtained via the Fourier

transform of the pulse, which is

Eq (w) - E Eq(tn) exp [-iwtnJ 1 (2-2)

where Eq(tn) is the time-domain response.

The far-field electric field is obtained as the discrete Fourier

transform of the near-field electric field. Thus, the far-field

electric field is given as

E(W,) E Eq(w) exp -J - sin(O)Yq (2-3)

where Yq is the y-coordinate of the qth measurement point,4 is the

azimuth angle of the far-field observation point, and where Eq is a

previously defined by Equation (2-1). A factor (1/r), where r is the

distance from the center of the measurement plane to the far-field

observation point, has been suppressed in Equation (2-3) and subsequent

equations.

The power density in the far-field of the antenna is obtained by

multiplying Equation (2-3) by its complex conjugate. The resulting

equation for the power density P(w,O) is thence

p(,O) E*(wO)E(wO)

(2-4)

EqZq E*q (IC)Eq(W)exp sin(O) (Yq,-Yq)]

Equations (2-1) through (2-4) are the well-known basic equations

for analyzing deterministic (non-random) antenna patterns utilizing the

frequency domain approach. The temporal (time) behavior of the

electric field is obtained via the Fourier transform with respect to

frequency. The corresponding analysis of a. randomly-excited array

antenna primarily involves the application of certain mathematical

operations to these same equations, as described in the following

paragraphs.

The plots shown in Figure 2-1 can be interpreted as representing

the measured response obtained .rom one experiment involving a

11



randomly-excited an.tenna. Suceessive experiments would yield different

responses. Consequently, a randomly excited antenna has many possible

near-field distributions, spectral responses, and far-field patterns.

Thus the amount of data required to characterize a randomly excited

antenna will be much greater than the amiount of data required for a

comparable deterministic antenna unless a suitable statistical analysis

can be devised to reduce the data requirements.

The statistical average value of the far-field power density is

written as

q, <E*q(w ) Eq(w,*)> exp ai - sin(0) (Yq,-Yq)],

(2-5)

where the angular brackets denote the statistical average value 1 81.

The angular brackets are shorthand notation for integrals of the type

rJ L- 4 n 1

where x - a non-random variable,

- random variables, and

f(4) probability density for the random variables.

Similarlf, the statistical average value of the (complex) electric

field is

EW,) Eq <Eq(w)> exp -J i sin (,) YqJ (2-7)

The electric field is, of course, a complex valued function and is

therefore not an observable quantity. However, the statistical average

12



value and higher-order statistical moments are well defined quantities

1 5 1. In particular, the statistical average value of the complex

electric field Eq is defined as

<Eq(w)) - <Uq(w)> - j <Vq(W)> . (2-8)

where Uq and Vq denote the real and imaginary parts, respectively, of
Eq. Uq and Vq are defined in the conventional manner as

Uq(w) Aq(W) cOs [Oq(W) , and (2-9)

Vq(W) - Aq(W) sin laq(w)] (2-10)

where Aq(w) - relative amplitude (real number) of the electric
field at q, and

aq(w) - relative phase of the electric field at q.

Thus, a knowledge of the average values of the real and imaginary parts

of the near-field electric field over the measurement plane permits the

computation of the average far-field electric field as the Fourier

transform of the average near-field electric field.

The average power density is related to the product <E*> <E>,

where the symbol * denotes complex conjugation, as

<p(wf)> - <*(w,)><E(w,f)> + CE.,E(w,f) . (2-11)

The symbol CE*,E denotes the covariance function and is defined as

CE.,E ( w, ) - <E*(w,*)E(O,0)> - <E*(W,f)> <E(wfl)>(2-l2)

The equation for the far-field covariance function can be derived for

the linear array via straightforward algebraic manipulations. The

13



resulting equation is

CE*,E(w,*) = q2 (,*) +

IEqY- y(W) q( W) R (w) exp [J sin(tw)(Yq-Y q
%q ( Yq)

(2-13)

where 'Yq denotes the standard deviation of the near-field electric

field at q and Rq'q denotes the cross-correlation coefficient for the

electric field a' q and the conjugate of the electric field at q'.

The standard deviation Yq is a real number and is equal to the

square root of the stm of the variances of the real and imaginary parts

of Eq. Accordingly, Iq is written as

q () 0 u (  q) 2  + [a(W) 2 q (2-14)

where l(o )]q - stavdard deviation of the real part of Sq, and

fy()1 ]q - standard deviation of the imaginary part of .

The cross-correlation coefficients Rq'q are defined as the complex

numbers obtained via the equation

C , (W)

q q

where the numerator of Equation (2-15) is referred to as the cross-

covariance function. The cross-covariance of the electric fields at q

and q' is

14

i ,2-:



q q = <Uq ,(MU q(W> - <Uq,(w><U > (2-16)

. [<Vq(W)Vq(w)> - <Vq,(W)>cq(">]q

+j 11<vq,'(W)U q()> - <Vq ,(w)-<q( )d

[<Uq,(W)Vq( )> - <uq,('J><Vq(W> "

The rigorous analysis of the far-field statistical average power

pattern for a given frequency is seen from Equation (2-7) through (2-

16) to require computation of the following near-field statistical

quantities:

(1) statistical average value of the real and imaginary parts
of the near-fieJd electric field at all measurement points,

(2) the standard deviation of the real and imaginary parts of
the near-field electric field at all measurement points, and

(3) the cross-polarization coefficients of the near-field
electric field at all different measurement points.

In a near-field measurement situation, the first two quantities can be

determined by computing the "sample" average values and standard

deviations obtained from repeated trials. The sample average value [8 1

of a random variable W is defined as

<w> E W (2-17)
N n n

where Wn is the value of W obtained in the nth trial, and N is the

number of trials. Similarly, the sample standard deviation ow is

defined as

15



I~ E [W <N> 2  
(2-18)

The extraction of the cross correlation data is not straightforward and

this problem area is discussed in Part C.

2. Frequency-Averaged Statistical Average Antenna Patterns

The preceding discussions have addressed statistical

averaging over randomly-varying variables. It may be meaningful to

also average over frequency in some applications involving a CW

radiating system of moderate bandwidth. The purpose of averaging over

frequency is to obtain a single average pattern plus standard deviation

that adequately describes the general radiation characteristics of the

antenna. The single average pattern plus standard deviation replaces

the large collection of patterns versus frequency that would otherwise

be needed to characterize the antenna.

Two different methods for obtaining the frequency-averaged

statistical pattern have been formulated. The most direct method for

obtaining the frequency-averaged statistical average pattern is to

first compute the statistical average pattern at selected frequencies

and then arithmetically average the statistical average patterns. This

process is described mathematically as

1 En P(wo) (2-19)

where N is the total number of selected frequencies and where frequency

averaging is denoted by subscript w on the outermost right-hand

angular bracket. It is also possible to obtain the frequency-averaged

statistical averAge pattern by first computing the deterministic

frequency average and then computing the statistical average. This

process is described mathematically as

= 7; , > esp[-jd W (2-20)
W q q q'q >qq



where

dq~q - n (Yq, - Y ). and (2-21)
qq c qq

<Dqfq 2 'N q 'q q t4.)E q (wn)>)exp[jdq'qun] (2-22)

The amount of computational labor required to compute frequency-

avtrage statistical average patterns is roughly equivalent for the two

methods.

The out-of-band radiation patterns of a 20-element multimoding

array -were studied numerically via both direct Monte Carlo simulations

and Equations (2-1) through (2-19). For this array, whose in-band

design frequency is 9.0 GHz, Monte Carlo patterns as well as the

statistical average patterns and standard deviations were computed for

selected frequencies up to 19 GHz for various in-band scan conditions.

Experimentally-derived out-of-band phase shift and attenuation

statistical parameters for a vaveguide element containing a ferrite

phase shifter were used as inputs. Accordingly, the modal phase

variations follow a Gaussian distribution aed the modal power

variations follow a unifcrm distribution to good approximation.

It was found that for small in-band scan angles the statistical

average pattern and standard deviation at frequencies of 14 CGz, 15.7

GEz, and 18 GHz could provide a good ENC description of the radiation

characteristics over portions of the frequency band for which energy

can propagate in the first two rodes, the first three modes, and the

first five modes, respectively. Figure 2-2 shows the calculated

average pattern and standard deviation at 18 G~a for broadside scan

superimposed on calculated Monte Carlo patterns for 16-19 CHz region

for the cross polarized component of the radiated powe: for propagation

in the first 5 waveguide modes. For in-band scan angles of about 30

degrees or more, a better LEC description is obtained by including at
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least the statistical average patterns for frequencies near the edges

of the frequency sub-interval because the patterns at different out-of-

band frequencies scan through ufiequal amounts for a given in-band scan

angle [ 9 ]. The spatial regions corresponding to the superimposed main

beams and grating lobes clearly delineate areas of particular concern

in EMC applications.

The statistical average patterns and standard deviations at

selected frequencies can provide a very succinct engineering

description of the important EMC characteristics of wideband CW

multimoding antennas. The statistical average patterns and standard

deviations are a practial alternative to the comparatively more

expensive and cumbersome Monte Carlo simulations.

3. Reduction of Data Measurement Requirements

A reduction in the near-field data measurement requirements

can be achieved at the expense of a nominal reduction in the accuracy

of the far-field pattern details. Specifically, reducing the amount of

measured data either by increasing sample spacing or by truncating the

size of the transverse measurement plane will generally cause errors in

the calculated far--field patterns. The magnitude of the far-field

pattern errors is a function of the sample spacing, the relative power

level at the edges of the truncated near-field measurement plane, and

the accuracy of the measured amplitude and phase recorded at each

sample point [10]. The effects of number of sample points and phase

measurement accuracy on the calculated far-field power pattern levels

is displayed in Figure 2-3. The effect of the number of sample points

on the beam pointing error are displayed in Figure 2-4 for a specified

phase measurement error. It was assumed that the relative power at the

edges of the measurement plane is -25 dB with respect to the highest

recorded near-field amplitude. The analysis and equations employed to

obtain these results are summarized in Reference [10].

Figure 2-3 is a plot of the error in the calculated far-field

power pattern versus the "no-error" power pattern level for an R.M.S.

have measurement error of 5.0 degree for sample spacings of IX and 2X,

where X is the operating wavelength. The "no-error" power pattern
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level along the abscissa is the power pattern level calculated from X/2

spacing for a near-field measurement plane which extends to the -40 dB

level. Figure 2-4 is a plot of pointing error versus R.M.S. phase

measurement error for sample spacings of A/2, IX , and 2A .

Clearly, the accuracy of the calculated power pattern is degraded

by large sample spacings, truncated measurement planes, and near-field

measurement errors. It is also true that smaller near-field

measurement errors permit the use of larger sample spacings and/or more

severely truncated measurement planes. Of course, the advantages of

reduced data recording requirements must be weighed agdinst the

accuracy requirements for the antenna under test. However, it appears

that substantial reductions can be achieved for many engineering

applications where the, main interest i5 in obtaining valid estimates of

mainbeam and grating lobe power levels and pointing directions and

where moderate over-estimates of the average sidelobe level are

acceptable.

C. Near-Field Covariance Study

The fact that the electric fields at different near-field sample

points are correlated has an effect on the measurement time, accuracy

and cost which can be appreciated by considering two different

measurements using a single probe to measure a wideband phased array

antenna. The two measurement schemes will be denoted for convenience

as Method I and Method II.

In Method I, data are recorded as the probe is moved over the

measurement plane in a raster scan. The operating frequency and array

scan condition are assumed to be constant while the probe s cans the

entire measurement plane. This takes about two hours of eltpsed time.

The probe is then returned to its starting point, and the array phase

shifters are "cycled" and returned to the initial scan condition. Data

are recorded at the same frequency as the probe again traverses the

measurement plane. This sequence of events is repeated, say, 50 times

for a given frequency and array scan condition. The total measurement

time required to record data for 100 frequencies and 30 array scan

conditions is about 300,000 hours. The measurement time is clearly

excessive. Additionally, it is very unlikely that an out-of-band array
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antenna under test can be kept stable, i.e., no variation in modal

content in any element, for the two-hours needed to record data for

each selected out-of-band frequency and array scan condition. However,

if the array element signals could be kept stable the near-field

covariance functions could be computed divectly from the measured data.

In Method II, the probe is held stationary at a preselected sample

point while the signal source is scanned through the entire frequency

spectrum of interest for a given array scan condition. The phase

shifters are then cycled and returned to the selected scan conditio.

This procedure is repeated 50 times. A Pew scan condition is selected

and the foregoing sequence of events is repeated. Finally, the entire

sequence of events is repeated for all of the preselected sample

measurement points on the near-field plane. Total measurement time for

100 frequencies and 30 array scan conditions is estimated to be about

120 hours. This measurement time is reasonable for a thorough

characterization of a randomly-eccited, out-of-band, wide-band phased

array antenna. The average value and standard deviation of the

electric field at each near-field sample point can be computed directly

from the recorded data for each frequency and scan condition. However,

the covariance function for the electric fields at different near-field

sample points is more difficult to extract from the recorded data.

The covariance functions for the near-field electric field of a

given array cc- be computed in a straightforward manner in terms of the

covariance function for the electric fields on the array aperture. Of

course, the aperture covariance function is not known in practice. If

it were known, there would be no need for near-field measurements.

However, an analysis of a specified array antenna can be used to study

the general nature of the near-field covariance functions and their

impact on the accuracy of the far-field average power pattern

calculatiomi. Furthermore, near-field covariance functions computea in

this manner provide baseline data that can be used to check the

validity and accuracy of near-field covariance functions obtained from

analysis of simulated measured data obtained from a simulated Method II

measurement. Accordingly, the near-field covariance funLtions for a
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linear array of wire dipoles have been studied analytically and

numerically. A corresponding study for an array of multimoding

waveguide elements would be beneficial but is beyond the scope of the

current efforts.

1. Analysis of Wire Array

The linear array of vertically-oriented, center-fed wire

elements shown in Figure 2-5 is analyzed in the following paragraphs.

It is assumed in the analysis that each element is fed by a constant

voltage source.

The electric field Eq at measurement point q on the line defined

by Z=O, X=Xo iG Z-directed and may be written as

exp[-jk + ( - Y ) 2 ]
E =C X 2: I q (2-23)
q 0(

o q 2

where
1k= complex current at the current amplitude maximum

on the 9 th element,

Yq - the Y coordinate of the qth measurement sample point,

YZ = i-he Y coordinate of the Lth element,

k = 21T/X where X is the wavelength, and
C= iW f+h/2 (,ejk zZ'd

Co 47T Ph12 We zd.

The integral appearing in the definition of CO is the same for each

element at a given frequency and is just the Fourier Transform of the

current distribution W(z') along the length of the element, where

(') is normalized to have a maximum amplitude of 1.0. CO will be

suppressed in most of the remaining equations.

The statistical average far-field power density P( ) at

azimuth angle$ can be computed as previously stated, to wic:
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P (4 )> <9*( )> <'E()> + Eqzq Cqq exp [(jk gin 5) (Yq' -Yq)A

(2-24)

where <E(*)> is the Fourier Transform of the average near-field

electric field, <E*(*)> is its complex conjugate, and Cq'q is the

near-field covariance function defined as

Cq'q - <4', Eq> <Eq'> <Eq> (2-25)

where the symbol * denotes complex conjugation.

The near-field covariance function Cqeq obtained fro Equations

(2-23) and (2-25) is then explicitly computed as

Cq'q E y, CeLG*qGLq (2-26)

where

C the covarance function for the current on

element I and the conjugate of the current

on element V', and

* exp jk +( -yid., -I(Y ZY,

q I tq X + (Y - Y) 2  *2 + (Y - y )2 (2-27)
a q' o qj I

The current covariance fuction C is by definition

Equations (2-26) and (2-28) express the fact that the near-field

covarianc-! function can be computed from the current covariance

function.
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The current covariance function C,,, is a function of the mutual

',Hrn1tttowp 'm4ttLx -Cut the attay and thi ututLmtLca psrammt~. ur 01V

input voltage sources. In particular, the current at the tth element

is computed as

I t MEr U V (2-29)

where

r K m elements of the complex admittance matrix [111, and

V K complex voltage of the Kth voltage source.

It follows then that COx is computed as

C EI I Cr ,K' r 9KC KtK  (2-,10)

where C ,KI is the voltage covariance function.

The current covariance function has zero magnitude in two

different special cases. First, the current covariance function is

zero when all of the voltage covariance functions are zero. This

occurs when the voltages are deterministic (non-random). The currents

are then perfectly correlated with correlation coefficient R I I 1.0

as can be disicerned from the equation

.C
R ilk (2-31)

where &.Z standard deviation of the complex current, by taking the

limit as the numerator and denominator approach zero. Second, the

current covarionce function for X 0 ' is zero when, simultaneously,

the voltages are uncorrelated and the mutual coupling between current

elements is zero. In this case the voltage covariance C K K  K

(y2) and r . 2, r9  , i~e., the voltage covariance matrix and the
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mut'mal admittance matrix both contain non-zero matrix elements only
along the diagonal. This second case, where C 0 for t X 0,

Lit

corresponds to the situation where the currents on different elements

are uncorrelated and hence C - 6 2

L't Eli I
It will be assumed in the rest of the analysis that the voltage

sources are statistically independent and are therefore uncorrelated.

The behavior of the near-field covariance function will be examined for

the case involving isolated current elements (r L, 6 U ) and the case

involving mutual coupling among the current elements.

The near-field covariance function may be written as

Cq'.q ' Z I 2  (v 2)~ 0
£q' G2q

sZC VK )K V -
6  K £'q' Lq (2-32)

for the realistic situation when the currents are coupled and as

Cq'q 1 E] ' 2 (y2) 1 GjqGjq (2-33)

when the element currents are not coupled. tquation (2-33) is obtained

from Equation (2-32) by setting r*,1 6 6 so that the off-L a.CK it 'sc ticdiagonal elements of the mutua' idmittance matrix are zero. Equation

(2-33) shows that the near-fie covariance function is non-zero even

if the near-field electric field is produccd by isolated, statistically

independent currents. This covariance will be denoted for canvenience

as intrinsic covariance. It is always present in stochastic antenna

probLems. Equation (2-32) shows that the total near-field covariance

function in the realistic situation involving coupled radiating

elements consists of two components, namely the intrinsic covariance

and a second component denoted herein as the interactive covariance.

The interactive covariance is present only when the radiating elements

"interact", i.e., are electromagnetically coupled. A third component
9of the near-field covariance function, denoted as the intra-elesent
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covariance, occurs for multimoding waveguide antennas due to

correlation among the modes propagating within each separate waveguide

element proper. This covariance contribution is absent for the wire

array under consideratioc.

It should be noted that the near-field covariance function for the

wire array given by Equation (2-32) is scan-invariant. This result

follows from the fact that the mutual admittances are scan-invarsaut.

Of course, the statistical average amplitudes and relative phases of

the electric field at each sample point do change wiLh scan angle. The

near-field covariance functions for a multimoding out-of-band waveguide

array may change with scan angle due to changes in average mode

excitations with scan angle.

2. Numerical Study of Wire Array

Numerical simulations were conducted to study both the near-

field and far-field radiation characteristics of a linear array of nine

center-fed wire elements. The array elements have length X0/2, where

X0 is the free-space wavelength at the design in-band frequency of 3.0

GHz, and are spaced X,/2 apart along the y axis. Each wire element is

assumed to be fed by a constant amplitude voltage source, and each

source is assumed to be matched to a 50-Ohm at both in-band and out-of-

band frequencies.

The following data were computed for an array of coupled elements

and an array if "isolated" elements for both the in-band frequency of

3.0 GHz and and the out-of-band frequency of 9.0 GHz:

(1) Non-random (deterministic) near-field power distributionc
and far-field power patterns,

(2) Random (Monte Carlo) near-field power distributions and
far-field power patterns,

(3) Analytical statistical average ner-field power
distribution and analytical statistical average far-
field power pattern,

(4) Numerical averse far-field pattern and its associated
standard deviation based on 50 Mcnte Carlo random
far-field patterns, and

(5) Near-field covariance funct.ions.
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The data for items (I) through (4) were computed for in-band scan-

angles of zero degrees and 30 degrees. The near-field covariance

functio-s for the wire array are scan-invariant ard, hence, they were

explicitly computed only for the broadside (zero-deree) scan

condition.

The near-field covariance functions and their effects on the

statistical average power patterns are the topics of paramount interest

and only there data -will be presented and discussed herein. A sketch

of the simulated near-field measurement situation is shown in !igure

2-6. The near-field data were computed for 65 sample points centered

on the near-field sample line. The near-field sample line was chosen

to be 8A wide and is located Z from the array.

The key results of the numerical studies can be summarized with

the aid of the data plotted in the group of Figures 2-7 through 2-10

for the in-band frequency of 3.0 GH and the group of Figures 2-11 

through 2-14 for the out-of-band frequency of 9.0 Glz. Th- data are

aequenced in the saae order within eachk group. The first figure in

each group is a plot of the near-field power distribution for

deterministic (non-random) excitation of an array of coupled current

elements for broadside scan. This plot is followed by plots of the

scan-invariant, near-field sttistical covariance functions and plots

of the corresponding statistical average far-field power patterns for

broadside scan. The statistical data in each figure are displeyed for

interacting (coupled) array elements and non-interacting (isolated)

array elements by the plots labeled B and A, respectively. All of the

near-field plots in Figures 2-7 through 2-14 are normalized with

respect to the peak magnitude of the non-random, in-band, near-field

power distribution shown in Figure 2-7.

The general behavior of the near-field covariance functions may be

d~scerned from Figures 2-8 and 2-9 for the in-band fraquency and

Figures 2-12 and 2-13 for the oit-of-band frequency. The covariance

functions for the center sample point with all other points are

symmetric about the centar point, while the covariace funcclcns for a

sample point opposite the edge of the array with all other sample

points are asymmetrical. This behavior is expected because the array
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is finite. An infinite array would everywhere have a symetriccal

co;ariance function. The total covaria.ce function has greater peak

twignitude than the intrinsic covariance, and also has brooder lobe.

These differences are more pronounced for the in-band frequency. This

is reasonable because the current elements are only weakly coupled at 9

GHz. Accordingly, the interactive covariance component of the total

covariance is much smaller than the intrinsic covariance component ant,

hence the total and intrinsic covariances do not differ markedly at 9.0

GHz.

The behavior o' the statistical average far-field power patterns

may be examined via the plots shown in Figure 2-10 for 3.0 GHz and

Figure 2-14 for 9.0 GHz. The statistical average patterns for the

array of interacting current elements have greater peak magnitute and

decrease more rapidly versus azimuth angle than the average patterns

for the array of non-interacting current elements. The difference in

the ave:age partterns for interacting and non-interacting elements is

more pronounced for the in-band frequency than for the out-of-band

frequency. This result could have been anticipated from the near-field

covariance functions because the total and intrinsic near-field

covariances are significantly different for 3.0 GHz but are only

slightly different for 9.0 GHz. The results for other scan angles not

displayed herein are entirely consistent with the results for the

broadside scan angle.

It can be inferred from these results that the intrinsic

covariance function is a "good" engineering approximation to the total

covariance function if the inter-element coupling is sufficiently weak.

Further numerical studies or, preferably, meas-ared data are needed to

determine if the inter-element coupling of ultimoding out-of-band

waveguide phased arrays is sufficiently weak to permit valid estimates

of the average far-field power patterns to be obtained in this manner.

OF- course, it is preferable to determine the total covariance functions

from the measured data. This possibility is addressed in the following

subsection.
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3. Recovery of Covariance Functions from Measured Data

In principle, the covariance functions can be recovered from

the measured stastistical data via matrix algebra, as follows. The

near-field covariance function Cq~q is related to the current

covariance function C ,L via Equation (2-26), to wit:

Cqqq EZ Lt, I vi qv G kq  (2-34)

where G and G are the Green's function and its conjugate, as
previously defined by Equation (2-27). This equation is equivalent to

the matrix equation

AD - B (2-35)

where D and B are column vectors corresponding to the element current

covariances and the near-field covariances, respectively, and where A

is tte matrix formed from the product of the Green function and the

appropriate conjugate Green function. Equation (2-35) may be written

in terms of the matrix elements Aij and the column vector components Dj

and Bi as

E. Aij Dj - i 2-36)

where t.he indices i and j are related to the (W',L) indices and (q',q)

indices as

i = q , (2-37)

where q' is fixed, and

j - 1 (L' - 1) L. (2-38)
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If A is square and tton-singular and the right hand column vector B

is known from measurement, the unique solution for D can be obtained by

solving the set of linear equations obtained from Equation (2-36). The

index j must vary from 1 to L2 , where L is the number of radiating

elements, and we choose i-l to L2 so that A will be a square aetrix.

This choice cf maximum i=L 2 means that measured values of the selected

rear-field covariance function must be supplied for L2 sample points on
~the near-field plene.

The matrix A will be non-singular if its determinant is non-zero

[12]. Computer calculations of the determinants for 3-element array

and for a 9-element array were performed using double precision

airthmetic. These computations wore conducted for several different

near-field distances and for several different sets of sample point

spacings for each near-field distance. It was found that the computed

determinants for the 3-element array ranged from 10 - 5 to 10-8. The

computed determinants for the 9-element array ranged from 10 - 12 to

10-14. These results imply that the matrix A is "nearly" singular.

These numerical results do not prove that the matrix is non-singular

because the computations are subject to non-negligible errors despite

the use of double precision arithmetic. However, iispection of the

matrix elements further supports the notion that the matrix is non-

singular but that it is nearly singular. The elements of the 9x9

matrix for the 3-elernt array are shown in Table 2-I. It can be

discerned that the matrix elements do not dif, markedly from each

other. However, inspection of the full matrix ow that no two rows

are the same nor are any two rows related by a stant. Similarly, no

two columns are the same nor are any two columna , 'ted by a constant.

Thus, one may conclude that the matrix is non-singu. ar. One may also

conclude from the determinant computations and from the fact that the

matrix elements Rre so similar that the matrix is "nearly" singular.

One anticipates trouble in numerical computations involving a

nearly singular matrix. Most computer programs designed to numerically

perform matrix inversions or to solve systems of equations work well

for a diagonally drminant matrix, but they can fail badly for a macrix
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that departs "too much" from the diagonally dominant situation. The

matrix A is certainly "ill conditioned" in comparisop to a diagonally

dominant matrix. Consequently, the more common methods such as

Gaussian elimination with iterative improvement or the iterative Gauss-

Seidel and Jacobi techniques [13] failed to converge to accurate, or

even sensible, answers for the 9-element array. A straightforward row

reduction technique written for this problem gave good results for 3-

element and 5-element arrays, but produced grossly erroneous results

for 7-element and 9-element arrays.

Acceptable numerical results were finally obtained with an

algorithm based on a projection method for solving singular or nearly-

singular systems of equations [ 141. This same method has been employed

in the analysis of probe compensation errors conducted under this same

contract and is well documented in Reference [15]. The basic method of

solution can be summarized by considering the expression for the

(m+l)th iterate,

ID m) ,a] - B
D(m+l) - Dm - -aa am (2-39)

where D(m ) is the solution after m iterations of this equation, am is

the mth column vector of the transpose conjugate matrix of A, Bm is the

mth element of B, and where the square brackets denote the inner

product of the enclosed quantities. A formal proof that this sequence

converges for any A, B, and initial guess D(O) is presented in

Reference [14]. If the system of equations is consistent, it then

follows that the limit point is a solution of the system.

The real parts of the exact values of the normalized current
covariances and the values computed from the projection algorithm are

plotted in Figure 2-15 for a 9-element wire array operating at 3.0 GHz.

The plotted data are normalized to the largest value of the exact

current covariance. The data are symmetrical about the center point

(5,5) and, hence, only the data for (1,1) through (5,5) are plotted.

The magnitudes of the imaginary' parts of the exact and estimated

covariances are < 0.012 and < 0.04, respectively, and are therefore

not plotted. The computed values plotted in Figure 2-15 were obtained
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by iterating Equation (2-39) 100 times, which took 57 seconds of cpu

time. Additional iterations produce neglible improvement of the data.

The initial starting value for the iterations was

Dj CQ (L+, ) ep[-.693ko'-Z) 2 ] (2-40)

The right hand column vector B for this computation was the self

covariance function Cqq, which is just the variance of the electric

field on the near-field measurement plane. (Similar results are

obtained if a measured cross covariance function is used as the known

right hand column vector). The computed element covariances generally

replicate the prominent "lobes" of the exact element covariances.

Plots of the magnitude of the exact and computed near-field cross

covariance function C41q (for q-1,81) are presented in Figure 2-16.

The computed curve in the figure agrees closely with the exact curve

over the portions of the graph where C41q is large. The close

agreement is attributed to the fact that functions obtained by summing

or integrating over a large number of complex quantities are usually

insensitive to small errors in the summand or integrand.

The results just discussed indicate that useful estimates of the

near-field covariance functions can be obtained from a knowledge of the

self covariance function on the measurement plane. Knowledge of at

least one cross covariance function is also needed in order to provide

a good check of computational accuracy. Additional research is needed

in order to determine the feasibility and accuracy of this method of

recovering the covariance functions for array3 comprised of hundreds or

even thousands of elements.

D. Probability Density Functions

A thorough characterization of the radiation pattern statistics

can be obtained if the probability density function (p.d.f.) for either

the radiated field amplitude or the radiated power density can be

discerned. Once the p.d.f. is known, the standard deviation or any

other higher order statistical moment can be computed. Similarly, the

cumulative probability distribution (c.p.d.) is readily computcd by

integrating the p.d.f. Of course, the computations of the statistical
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moments or the c.p.d. may have to be performed numerically because

closed-form analytical expressions consisting of a finite sum of

elemetary functions for the integrals involving the p.d.f. may not be

available. Nevertheless, it is usually more efficient to compute

cadiation pattern statistical data via the use of a reasonably accurate

p.d.f. then to compute radiation pattern statistical data directly in

terms of the near-field statistical data as was done for the average

radiated far field power density.

A study of the modern literature concerning electromagnetic

scattering and radiation statistics indicates that the p.d.f. derived

by N. Nakagami [16] in 1954, and that also was independently derived by

P. Beckman [17J in 1961, is the most general one. Other p.d.f.'s for

radiation/scattering, such as thise due to S.O. Rice, Hoyt, and Lord

Rayleigh [ 18-20 ] may be derived from the Nakagami p.d.f.

The key assumption in the derivation of the Nakagami p.d.f. is

that the real and imaginary parts of the randomly jarying

electromagnetic field both follow a Gaussian p.d.f.. The Gaussian

p.d.f. is an excellent approximation to the true p.d.f. if the electric

field is produced by a large number of statistically independent

sources. In practice, about 7 or more statistically independent

sources are sufficient to yield closely Gaussian p.d.f.'s for the real

and imaginary parts of the radiated field.

It may appear at first sight that the Nakagami p.d.f. is not

applicable to the randomly excited wire array studied in subsection C

because the element currents, as well as the measured near-field

electric fields, are definitely correlated. However, the radiated

electric fields at any point in the near-field or the far-field of the

antenna can be expressed as a sum of terms involving non random matrix

elements multiplied by the statistically independent random input

voltages. Specifically, the electric field Eq is related to the input

voltages VK as

Eq aZ zkG ,k r kVk  (2-41)

where all other symbols are as previously defined. The real part Xq of

Eq and the imaginary part Yq of Eq are then
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6,1

Xq- E [(Hr)qp(Vr)p - (Hi)qp (Vi)p ] and (2-42)
P

Yqin £ [ (Hi)qp(Vr)p + (Nr)qp(Vi)p 1 (2-43)

where

(Vr)p the real part of the complex random
input voltage Vp,

(Vi) p . the imaginary port of the complex

random input voltage Vp, and

where the coefficients of (Vr)p and (VO p are

(lr)qp - Re {%i Gtq rpP,) . and (2-44)

(Hi)qp - In fig Gtq rp } (2-45)

The real part of Eq given by Equation (2-42) and the imaginary

part of Eq given by Equation (2-43) are each just the sum of

stastiscically independent random variables, and if the number of

voltages is > 7, the p.d.f. for X and the p.d.f. for Y will both be

Gaussian 1 17 1 to good approximation. Hence, the amplitude of the

radiated field will follow the Nakagami p.d.f. This is true for both

the (radiating) near-field amplitude and the far-field amplitude.

The derivation of the NakagaQ p.d.f. involves the use o the

joint probability density of X and Y. The joint p.d.f. for two

Gaussian random variables X and Y is known to be [8 .

Y) 2 1 {exp [- (x-cx>]
F(,)',21roY~J2,y 2' 222

2Y2"I 2y 02

exp { 2pIX-<X>J[Y-'.y>] 11 (2-46)

2y2 C 102
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where X and Y are the average values of X and Y, and a 1 and 02

are the standard deviations of X and Y, respectively. p is the

correlation coefficient for X and Y, and y .j-1- We have omitted

the subscript q from X and V for convenience.

The Nakagami p.d.f. f(P) for the power density P is preferred here

and is obtained as follows. First, the joint p.d.f. for X and Y is

expressed in polar coordinates by replacing X and Y by

X = T cos(t) and (2-47)

Y = ;' sin(k) , (2-48)

where P -- X2+y 2  , and integrated over the annular ring of thickness

dS fr w 0 Lo 21 , to wit:

202n

x exp Ics cos(t)--<X>][1 W sin(o)--c V>]

4 q0 Yexp -do+

21z yoa 2a

(2-49)

Next, the integral is expressed as an infinite sum involving modified

Bessel functions of the first kind and integer order. The resulting

expression for f(P) is then

f(p) exp [gP + hA2 ]

X r I 2r -a+ ont
n n n ( ) 2n (' cos1) 1)

(2-50)
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where cn is Neumann's factor ( cn-1 for n - 0 and En=
2 otherwise) and

where the other symbols are defined as follows:

11 +  
(2-51)

2 2 201 + 02 + 4P ( 02)] , (2-52)

2 2

$1 0 + 72 - [ 4p2 + (01 - 02)] ,, (2-531

A - < X >2 + < y>2 (2-54)

a - cos( 6
1 -6 2) , (2-55)

b - A sin( 61 - 62) , (2-56)

-1 N -1 <x>1 (2-57)
2tan

62 1 tajn-[ 2 (2-58)
2

h a 52 a + b 2 B , and (2-59)

a tan-l [ [tan(6 1-62 )] (2-60)

All of the new quantities for this expression for f(p) are

computed solely in terms of the same variables that are needed to

define the joint p.d.f. for X and Y. These are (1) the average values

of X and Y, (2) the standard deviations of X and Y, and (3) the

correlation coefficient for X and Y. It should be noted that these
variables generally depend on frequency, array scan angle and the

coordinates of the field point under consideration. In particular, the

far-field power density P - P(w,# ) depends on frequency, the azimuth

angle of the field point, and the array scan angle.

The average values and standaro deviations of X and Y as well as

their correlation coefficient P can be computed with the aid of

Equations (2-42) and (2-43) when the statistics of the input voltajes

are specified from theory or experifect. The equations for X

51
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y , a1 , 02 and P can be computed directly in terms of the input

voltage statistical parameters.

The average values and standard deviations of X and Y are also

readily obtained from a Type II near-field measurement as described in

subsection C. The computation of the correlation coefficient P from

the measured data for arbitrary random excitations involves problems

similar to those encountered for the covariance functions that were

discussed in the preceeding subsection. However, it is possible to

obtain valid estimates of P by assuming that the random voltage

variations have the same variance at each element.

Numerical analyses were conducted to assess the validity of the

Nakagami p.d.f. for computing the far-field amplitude p.d.f. for the

nine element wire array described previously in subsection C. The

computations of the Nakagami p.d.f. were accom; lished by nurically

integrating the expression for f(P) given by Equation (2-49) rather

than by stumming the series expression given by Equation (2-50). These

computations were performed for two different sets of input parameters

X , Y , 01, c2, and p to the Equation (2-49). The first set of

input parameter values were the values of X , Y , c1, 02, and

computed by specifying the input voltage statistics for statistically

independent input voltages. This set forms a proper set of input

parameters for the Nakagemi p.d.f. The second set of values for X ,

Y F 01, 02, and p were computed directly from simulated correlated

voltages with an assumed Gaussian correlation function. This set of

input parameters involves correlated "sources" and therefore violates

the strict criteria for obtaining the Nakagami p.d.f. The input

voltages for both situations had Gaussian phase distributions with zero

mean value and standard deviation of 57 degrees on all elements. The

Gaussian correlation for the correlated voltages was

Ci, - exp [-[.693 (i-LI) 2 J (2-61)

where K and K' are element numbers.

Monte Carlo calculations were performed to produce data for

constructing the cumulative probability distribution for the far-field

52
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amplitude in the boresight direction along the nose of the mainbeam and

in a direction of a low sidelobe. 'he cumulative distributions were

obtianed frcm 50 Monte Carlo runs. The cumulative distributions based

on the Nakagami p.d.f. were obtained by numerically integrating f(P).
Plots of the cumulative distributions are show'n in Figu~res 2-17

through 2-20. Each figure is a plot of the probability that the field

amplitude is "less than or equal to" the abscissa. The abscissa in

Figures 2-17 and 2-19 is the relative amplitude in real numbers while

the abscissa in Figures 2-18 snd 2-20 is the relative amplitude in

decibels. The abscissas were scaled in this manner to display the

interesting fact that the cumulative distribution resemble Gaussian

cumulative distributions when plotted this way, in agreement with

theory for the mainbeam and low sidelobe regions 1 2]. Each figure

contains two cumulative distribution c,.rves. These are (1) the curve

constructed from Monte Carlo data, (2' the curve obtained from f(P).

The distributions in Figures 2-17 and 2-18 correspond to the

statistically independent voltage sources, and distributions in Figures

2-19 and 2-20 correspond to the correlated input voltages.

Inspection of the plots contained in Figures 2-17 through 2-20

shows that the Nakagami curve obtained for statistically independent

sources is in very good agreement with the Monte Carlo curve. Exact

agreement is not expected hwcauue the Monte Carlo curve is constructed

from "only" 50 runs. The Nakagami curve obtained for correlated

sources is slightly less accurate but it is a reasonable approximation

to the Monte Carlo curve.

These results serve to verify Naksgam's p.d.f. for itatistically

independent sources and they also indicate that it may be a useful

engineering approximation for certain classes of moderately correlated

sources. Namely, it may be applicable for near-field measurements

involving randomly excited aveguide arrays for situations where the

envelope of the near-field covariance function Cq'q decreases at least

as rapidly as (1/ q-q' ) as the difference between q and q' becomes

"large." This condition appears to be truLe for the near-field data for

the wire arrays considered in this study. However, further studies are

needed to establish the range of applications for which the Uakagsmi
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p.d.f. can furnish valid engineering estimates of radiation statistics

for correlated sources in general and for out-of-band vaveguide arrays

in particular.

A simpler but less accurate approximate expression for the

radiation amplitude can be obtained that is nevertheless potentially

useful for some engineering applications where less accuracy can be

tolerated. The expression is derived by first ignoring the correlation
between the real and imaginary parts of the radiated field. The

effects of near-field source correlation are then incorporatcd as ;art

of a parameter that appears naturally in the expression that was

derived by ignoring the correlation between the real and imaginary

parts of the radiated field. The approximate expression for the

radiated power density obtained in this manner is

f[ [.0 P(W., + q2 (W.0)l.o[(.]
fEP(¢)J - c , exp[- '. ) I~[Bw-)] (2-62)

where f[ )] probability density function for the far-field

power density,

= £*w,*>KE~w~> ,(2-63)

T(W) E C, exp[j! sin()(Y (-
q q q'q c q' a ( 4

I ['] * Modified Bessel function of the first kind (2-65)
0 and order zero, and

(W. )= (W-4) P(W,4) (2-66)

2
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Plots of the cumulative distribution computed from this equation

are compared with the cumulative distribution obtained from the Monte

Carlo data are shown in Figures 2-2 and 2-22. Resonably good

agreement is obtained between the Monte Carlo curves and the curves

computed from Equation (2-62). However, additional testing is needed

to properly define the limits of applicability of this relatively crude

p.d.f. for antenna problems.

E. Time Domain Statistics

It is a well known fact th&t the time domain response of a

deterministic radiating system can be analyzed conveniently from a

knowledge of the complex frequency response via the Fourier transform

technique. The same procedure can also be employed to obtair the

statistical average time domain response of a randomly excited

radiating system. The probability density function (p.d.F.) for the

time domain response can also be discerned from the stochastic

equations obtained in this manner.

The behavior of the far-field electric field as a function of time

t is obtained from Fourier analysis of the frequency response as

2Vtr E E(w * O)exp[jwt] (2-67)

where

E(t,O ) = complex electric field at azimuth angle * vtrsus time,
and

E(cn,0) - the complex electric field at azimuth angle *1 for
radian frequency w -2wf,where f is the frequency in
Hertz.

E( w' n ) is the product of the input pulse spectrum H( n ) and the

frequency response E°( wn' n) obtained from a uniformly weighted input

frequency spectrum of width exceeding at least twice the bandwidth of

H(n) . Hence,

E( w ) = 
E° ( wn , n ) H( U ) (2-68)
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The power density P(t, 4 ) is then computed as E*(t, E) K(t, *) and is

written explicitly as the double sum

P(t, - Z , n £*(W no,)M(Wn, +)expEU(W n- %,)t] (2-68)

The time domain behavior of a pulsed stochast-ic antenna sybtem can

be obtained with the aid of the preceding frequency-domain equations

and the Fourier transform with respect to frequenc:. In particular,

the time dependent statistical average complex far-field electric field

may be written as

exp t ] (2-69)

In analogy with the techniques described previously for compuing

average power density, the statistical average time dependent power

density is written as

<P(t, .- <E* (t, )>- <.E(t,,)> (2-70)

+ n 2 + n , n  E ,n Rnon W) exp jj(w n - w n,)t]
(no# n1)

where C - standard deviation of E( n,$ ),

& = standard deviation of E*(w n'94 )9 and

Rn, M - cross-correlation function of E(w n# ) and E*(N 9 ).

The cross-correlation function U ) ippearing here is not a tiae

correlation function but rather is a frequznc-depo~dent correlation

function for the electric field and its conjugat. at different

unless the radiating system contains non-linear devices that have

pronounced hysterisis or contains devices whose characteristic response

time is commensurate with the input pulse width.
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The p.d.f. ft P(t, ) of the time domain power density P(t, * ) is
the Nakagami p.d.f. when the field and its conjugate at different

frequencieq are uncorrelated. Thir can be deduced at once by

recognizing that the reel and imaginary parts of the electric field

E(t,* ) each consist only of sums of statistically independent terms

when the Rn'n are zero. The input parameters for the Nakagami p.d.f.

are the average values of the real and imaginary parts of B(t,O ),

their standard deviations, and the correlation coefficient for the real

and imaginary parts of E(t, 0). The correlation coefficient for the

real and imaginary parts of Eft, *) is, of course, non-zero even

when the frequency cross correlation coefficients Rn n are zero.

A numerical simulatica of the pulse distortion suffered by a

rectangular pulse radiated by a reflector antenna for both in-band and

out-of-band frequencies for deterministic conditions is presented and

discussed in Section V.
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SECTION III

NEAR-FIELD ANTENNA-ANTENNA COUPLING

A. Introduction

An exact analycis of the coupling between real-world cosited

antennas would be extremely difficult or perhaps impossible to achieve.

Accordingly, the efforts on this task were devoted to deriving

approximate but accurate coupling prediction equations. Three

different techniques for coupling analysis were considered. These

three techniques are denoted respectively as (1) Plane Wave Spectrum

(PWS), (2) Spherical Spectrum Wave (SWS), and (3) the Geometrical

Theory of Diffraction (GTO). Most of the research efforts were devoted

toward development of the PiES technique. Nultiple scattering effects

are not addressed in the analysis. However, multiple scattering

effects can be approximately analyzed if the scattering matrix of each

antenna is specified from theory or measurements. Theory and equations

for the PUS and SWS approaches are presented and discussec in

Subsection B and C, respectively. Some results of numerical

simulations for PWS approach are also presented in Subsection B. The

GTD technique for deterministic antenna analysis has been adapted to

yield comparatively simple equations for certain classes of antenna

coupling problems. Discussions of the GTD technique are contained in

subsection D.

The analyses presented in this section were conducted in the

frequency domain. The primary goal was to obtain equations valid over

wide frequency bandwidths. The time domain response can then be

obtained by numerically computing the Fourier Transform of the

frequency domain equations. The wideband frequency response of swept

CW radiating systems can be characterized by numerically computing the

frequency-averaged pattern and standard deviation, as described in the

previous section.

B. %_S Analysis

The general plane wave spectruo scattering matrix theory was

or:.inally formulated to treat antenna coupling problems and it is well

docated in Reference [21]. The theory and equations are directly
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applicable to antenna coupling situations shown in Figure 3-1 where one

antennc is in the forward half-plane of the other antenna avd the relative

rotation angles a1 d B defined in Figure 3-2 are less than about 70

degrees in magnitude. The application of the FWS analysis to other

arrangements that do not obey these criteria depends on the ability to

select suitably "canted" reference planes with appropriate spatial filters.

This is a recominended area for future research. The PWS analysis for the

canonical situation depicted in Figure 3-1 is discissed in the following

paragraphs.

The complex voltage V(R, ap $q) induced in Antenna B when illuminated

by Antenna A is derived from PWS analysis as

V(R p, ) Co mEnA(kymqkzn). i(kym - ypkzn - Czq)-exp[ -j n' R)

(3-1)

where

A(kym,kzn) = transverse vectorial plane wave spectra of Antenna A,

B(kym - Cypq kzn - zq) - shifted transverse vectorial plane

wave spectra of Antenna B,

kys Z mth value of ky in the range - k o 
< ky < kof

kzn - nth value of kz in the range - ko < kZ < ko,

yp kosin(ap), evaluated at the specified azimuth

rotation angle ap,

- kosin(Oq), evaluated at the specified elevation

rotation angle Oq,

-kmn = kxm x kym y + k z z, where km (k; - ky a

and the x, y and z are unit vectors,
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Figure 3-1. Sketch depicting the arrangement of two antennas appropriate
for the FWS analysts of coupling.
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iFigure 3-2. ketch depicting the aimth rotation anle -Q n

the elevation rotation angle B associated vith

Antenna I of Wigute 1.
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R X x + Y y + Z ziwhere X, Y, and Z are the cartesian

coordinates of the center of rotation of Antenna B

relative to the center of rotation of Antenna A, and

co = a frequency-dependent proportionality factor.

The proportionality factur co is independent of antenna arrangements and

orientations and will be suppressed in the eemaining equations. The power

coupled in Antenna B is

P(R, a1p, ;q) IV(R, p,aq) 12 -[(0.5) "-II (3-2)

where Fr is the real part of the coumplex admittance at the output port.

The PWS of Antenna A may be expressed in terms of the propagating

modes in the waveguide feed as

A(kym,kzn) m ZZK Z a T(r. )exp [ -j(kymYt + kzn Z]
(3-3)

where

a P the complex excitation coefficient of the pth
waveguide propagating mode,

(K) = optical transform, computed as (1/2) .[l + cos Q ,

H -i the far-field vectorial pattern of the feed horn
when only the th mode propagates,

YZK = poinLs on the reflector aperture.

The angle K and the reflector apertre coordinates are depicted in Figure

3-3. Equation (3-3) can be rewritten as the sum of the reflector

transverse vectorial spectra A (kympkzn)

A(kymkzn) - E a A (kym,kzn) (3-4)

The correspunding equations for the PWS of Antenna B are
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(0,0,0o .4 -Focal Point

(xf ,0,0 )

Figure 3-3. Sketch depicting the antenna aperture coordinates
Y,Z k and the optical transform angle Ik-
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1(kym ky ) ): tk P bl11(-i, )XK , e)xp -j (ky Y k + k zn Z ) and

the alternative form,

B(kym,kzn) -Y b B (k ,k ) (3-6)

where

b = the complex excitation coefficient of che Pth waveguide
' propagating mode, and

all other symbols are as previously defined.

The equation for the statistical average power P(R,ap, q)

coupled to Antenna B when illuminated by Antenna A is derived as

<P(.,ua = ,n Z : a <a*,> <a > + Ca,.,[<bb,><b >+ cp qm n l n 1 i l l

x AP, (k ymk zn,)B ,(k ,- k ,k - k )cxp "-I'ym Zf Iyp n' zq kn' °

x A (k ymk zn)B (k - k ,k - k )exp [-jkn RPp mZ p yrn yp zn zq L"

(3-7)
where the statistical quantities are defined 

as

<a > average value of the complex mode excitation

coefficient ap P

<b > - average value of the complex mode excitation

coefficient b ,

Ca  covariance function for a* and a and
Pp P

Cb covariance function of b* and b

The wavevector ICmn is defined as kmn kcn + kyn + kzn -  Similarly,

km'n' is defined as k,.n , - km n , x + kym, y + kzn Z.
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Numerical simulations were conducted to compute the power coupled
between a pair of cosited antennas. The antenna arrangement is shown in

Figure 3-4. Antenna B is displaced a longitudinal distance X and lateral

distance Y from Antenna A. The antennas are not displaced in the vertical

Z direction. The power coupled to Antenna B versus the rotation angle was

computed for selected values of x and y for rotation angles in the range -

30 degrees to +30 degrees. Only the azimuth Plane Have Spectrums of the

antennas were used in the calculations.

The apertures of Antenna A and Antenna B are 24 inches and 48 inches,

respectively. The antenas are fed by WR-187 waveguide whose cutoff

frequency for the TE2 0 mode is 6.309 GHz. The in-band operating frequency

of each antenna is 5.5 CHz. Calculations were made for the in-band

frequency of 5.5 GHz and the out-of-band frequency of 6.5 CHz. The power

flow in each waveguide feed is entirely in the TE1 0 mode at 5.5 GHz. The

TE 1 0 and TE2 0 modes can both propagate at 6.5 GHz.

Antenna coupling can be conveniently described in terms of the mutual

gain M(R,a) relative to a pair of isotropic radiators. N(R, a) is computed

as

2R -

M(R, a)- (3-8)
a

where A is the operating wavelength and Pa is the power input to Antenna

A. For the purpose of this study, a power transfer efficiency factor of

1.0 is assumed for Antenna A and, hence, the total power radiated by

Antenna A is assumed to equal the input power.

The in-band, far-field antenna patterns of Antenna A and Antenna B are

plotted in Figures 3-5 and 3-6, respectively. The estimated theoretical

gain relative to an isotropic radiator is indicated at the top of each

plot. The antennas were regarded as linear apertures witl an "aperture

efficiency" of 0.9 relative to comparable uniformly illuminated apertures

for purposes of estimatiag the gain.

Out-of-band antenna patterns for the two antennas are shown in Figures

3-7 and 3-8. Figure 3-7 shows the oit-of-band pattern for Antenna A for

equal power flow in both modes with Lhe phase of the T9 2 0 mode +350
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relative to the TE1 0 mode. Similarly, Figure 3-8 shows the out-of-band

pattern for Antenna B for equal power flow in both modes with the phase of

the TE2 0 mode -500 relative to the TE1 0 mode.

The in-band to in-band mutual gain of the antenna pair is shown in

Figures 3-9 and 3-10. Each figure shows a plot of the mutual gain

expressed in decibels versus the rotation angle a in degrees for the

indicated values of longitudinal separation distance X and transverse

separation distance Y. The mutual gain relative to a pair of isotropic

antennas is displayed at the top of each plot.

The out-of-band to out-of-band mutual gain of the antenna pair is

shown in Figure 3-11 for the indicated out-of-phase modal propagation for

the longitudinal separation distance of 20 feet and lateral displacement of

5 feet.

Two general trends common to the in-band to in-band and the out-of-

band to out-of-band situations may be discerned from inspection of the

plots shown in Figures 3-9 through 3-11 and from additional plots contained

in Reference [5]. First, the peak value of the mutual gain decreases with

increasing lateral displacements for a fixed longitudinal displacement.

Second, tha peak value of the mutual gain increases with increasing

longitudinal displacement for a fixed lateral displacement. Both of these

trends are consistent with theory. However, the peak mutual gain may

exhibit "peaks" and "valleys" if the computation were made for a "finely-

grained" set of coordinates. Nevertheless, the "envelope" of the peaT'

mutual gain would exhibit the cited trends.

The peak mutual gain for the in-band to in-band situations always

occurs at, or very near to, the rotation angle at which Antenna B points at

the center of Antenna A, whereas the peak mutual gain for the out-of-band

to out-of-band situations is shifted a few degrees. The direction and

magnitude of the angular shift depends on the mode excitation in the feeds

of of the two antennas. The magnitude of the peak mutual gain also varies

with mode excitations. All of these trends are consistent with theory in

the sense of "coarse-grained" behavior mentioned previously.

Next, consider the situation depicted in Figure 3-12 where the

transmitting antenna illuminates a cylindrical obstacle located between the

trans..itting and receiving antennas. In order to determine the effect of
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the interposed obstacle on the antenna coupling the total transverse

spectrum for the transmitting antenna and the obstacle which is incident

upon the receiving antenna east be determined. This calculation, which is

fully described in References [211 and (22], is the basis for the

evaluation of the far-field pattern degradation caused by the near-field

obstacle. For the case of the interposed obstacle, the spectrum incident

on the receiver is the sum of the transmitting antenna spectrum A(k) and

the obstacle scattered spectrum AS(k) given by Equation (5-8) of Section V.

Assuming that the multiple reflection effects are negligible, the complex

voltage response can be computed from Equation (3-l) by replacing the

antenna spectrum A(k) with the composite spectrum

At(k) - A(k) + Aa () e- jkxXc (3-9)

The method of computation of the integral is thus the same whether or

not an obstacle is present. The only difference is tether the antenna

spectrum A6) or the sum of the antenna and obstacle scattered spectrum

At(G) is employed for the computation.

The plant wave spectrum scattering analysis algorithm was used to

construct a data file corresponding to the sum of the transmitting antenna

and obstacle scattered spectra, A second data file is then loaded with the

receiving antenna spectrum, and the transmission integral evaluation is

performed.

Recall that, for a tall cylindrical obstacle, the scattering matrix

element function in the vertical (0 - constant) plane is of the form SIN

(Z) /(Z). The antenna spectra in the vertical direction were also

approximated by appropriately chosen functions of SIN (Z) /(Z) form. These

functions were chosen to produce the correct 3-rB beamwidth for the test

antennas. The computation can be further simplified if the coupling

integral is performed only over the azimuth plane (i.e., 0 - u/2, ky

variable). This approximation is termed a "linear spectrum" approximation,

and it was found that this approximation, for the cases considered herein,

was a good approximation to the use of the complete (ky,kz ) spectra. Thus

the "linear spectrum" approximation was used to derive the antenna

decoupling data.
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Measured data for both 6-inch diameter and 24-inch diameter cylinders

located between 48-inch diameter paraboloidal, vertically-polarized

reflector antennas operating at 5.5 Q a vere available from previous

measurement nrograa 23 3 . Figere 3-12 shows the antenna/obstacle
geometry. The calculated antenna decoupling caused by the interposed 6-
inch and 24-inch diameter cylinders for antenna separation distances of 17-

feet and 47-feet is shown in figure 3-13. The term "decoupling" is defined

as the ratio cf the received voltage with the obstacle present to the

received voltage with the obstacle absent. Thus, the decoupling represents

the decrease in mutual coupling due to the interposed obstacle.

As shown in Figure 3-13, the calculated and meatured results for both

the 6-inch and 24-inch diameter cylinders for the 47-foot separation

distance are in very good agreement with the average measured data. We

note that the actual measured data exhibit a periodic oscillation abort the

average values presented herein due to multiple reflections between the

obstacle and antenna. Since these reflections are not considered in the

present analysis, it is appropriate to compare the calculations with these

average data. The typical maximm/minimm bounds on the measured data

deviate from the average values by approximately *1.5 dB and '0.5 dB for

the 24-inch diameter and 6-inch diameter cylinders, respectivel%..

The calculated decouspling for the 17-foot separation distance for the

6-inch diameter cylinder is also in very good agreement with the measured

data. However, the results for the 17-foot separation distance for the 24-

inch diameter cylinder exceed the measured data by a few decibels due to

the approximations that were made in the analysis.

Plots of the measured and computed mutual gain versus the azimuth

pointing angle of the receiving antenna are shown in Figures 3-14(a) and 3-

14(b). The ritual gain plots shown in Figure 3-14(b) were obtained with no

obstacle present. The mutual gain plots show in Figure 14(b) vere

obtained obtained with a 12.0-foot tall, 2.0-foot diameter mast located

midway between the two 4.0-foot diameter paraboloidal reflector antennas

that were separated 17.0 feet apart. The computed data were obtained via

Equations 3-I and 3-8. The elevation patterns of the antennas were

characterized in the approximate manner described previously, and mltiple

reflections were ignored. Nevertheless, good agrsement between measured and

83

,,e , . -erabw;-!t--. - -" .



4 ia

V W

0..

JCS

)t

w v~

w .

rC%Cr

C. CNJ 01.0

4,

ZU) 1

w

z

84



Z II
U) us.. 0 w4 L-

IL 0Z

z W:Q

IAL

j -lCLO 0 Iw 016

0 v
0 4920

416 woo u

o- Go $4
0 0

a uij~W
o0 a

0 V)

L4 0



00r

-t -4- ,4

-4

C0 1

T. to .- o .I

1 :z0

>~ V

4j $4 4) fo

oa i V

es .4 14 C 40

4-44

w- -T i 0 0 0

0-4 -

0 0 -1

-4

0 --1 0



computed data is achieved for this sample situation as well as for

situations involving cylindrical obstacles of 0.5-foot dianeter and
'. 4.U-foot diameter.

Application cf the PWS equation to predict witual coupling with an

obstacle located between the two antennas shown in Figure 3-1 and

displaced both vertically and laterally off the line joining the

antenna rotation centers is well understood. Tha anrenna/obstacle

situa::ion just .-scribed can be analyzed via existing equations.

However, the application of NBS analysis to handle the effects of an

intervening obstacle iocated between the two antennas depicted in

Figure 3-15 or a non-intervening obstacle such as a ccmmon aounti:tg

pole to which two or more antennas are attached are areas where further

research is needed.

C._phericai Wave Spectrum Coupling Analysis

The formulation of the SWS coupling analysis can be illustrated

with the aid of Lhe cosited antenna pair shown in Figure 3-15 and

the anteana coordinate system depicted in Figure 3-16- The variou9

symbols contained in Figures 3-15 and 3-16 are defined as

K ~ vector from center of Antenna A to center of Antenna B,
R' a vector from the center of Antenna A to a specified

near-field poin;,

-R' .- vector trom the center of Antenna t to tte specified

near-field point,

- azimuth rotation angle betwen Antenna A &na Antenna B, and

- elevation rotation angle between Antenna A and Antenna B.

-he complex voltage response V(i, B , a) of Antenna B when

iliuminated by Antenna A can be written as

v(i, -,) C . ib((j-j') (') dS' (3-10)

S.

%here C is a frequency dependent faccor and where !a and K" denote the0

complex near-ield electric fields of Antenna A and Antenna A,
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Figure -4.Sketch depicting the azimuith rotation angle a and the
elevation rotation angle Bassociated with Antenna B
of Figure 2.
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respectively. The surface integral in Equation (3-10) is integrated over

the surfice of the sphere of radius R'.

te vertically-polazized and horizontally polarized componens of the

electric field of Antenna A on che sphere of raeius 1P centered at Ante.na

A may be coaputed as

a  R , , Z > A v  h(2)(KR')Lr(co s  8')e - (3-11)

for vertical polarization and

aA ,- h h(2) is "

M 6 E Ah (KP')L (coo 8'e
(' 0e, 40) = Ef £n Ah (2 ,)r(O O)-jm t (3-12)

N,0) a n mnn Ti.

for horizontal polarization. The symbol h(2 ) denotes the spherical Hankel
n

function .-f the second kind and order n, and the symbol L M der-otcs the

associated Legendre polynomial of the first kind of order n and degree a.
The coefficients A v and A are reidily computed if Eai known on any

n ianv
spherical surface. It is assumed that the vertically-polarized and

horizontally-polarized far-field patterns are krovn, and consequently, the

coefficients can be computed from them. Equations analogous to Equatiors

(3-11) and (3-12) can he ritten Zrr the vertically-polarized and

horizontally-polarized fie,, of Antenna B, and a coordinate transformation

can bp applied to refer the fields of Antenna 3 to the Antenna coordinates

qr vic" versa.

The power coupled into Antenna B due to illumination by Antenna A is

then

P(,~,c)in~um~IdsA B n' l(R,801 (3-13)
n'm

where A= Av  + 1 anJ B= 6 .vBThe coefficients A and

and the integral I(R, 8 ,a) are computed as

A f f a (9, ) Lv,(cosO)e-jm* sin~d8d* (3-14)
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BQ, n f b(, )L ,n,(cos)eJm 4 sined0d, and (3-15)

I, (R,R,a) R- bn(nS')bn(K i-a'L.cse) m(cos(e,.)nam

(3-16)

The quantities ya(0 ,,) and j-b(1 ') are the total ve:torial angular

spe trums of Antennas A avd B, respectively. These total spectrums are

just the sum of the vectorial pectrums r or -b for each propagating mode

of the antenna feed systna. Hence,

, . 1a Fa (0,l) and (3-17)

I
Fba, E b b (9,4) (3-18)

up

where a and b denote complex exzitation coefficients for the propagating

waveguide modes.

The statistical average power is obtained in the straightforward but

tedious procedure described previously. The resulting expression is

SM n E pE qE p'Eq9 <AnM A pq >< nmp'q nn (B) pq (.)

n~mv p'q'

(3-19)

The joint statistical moment l A*pq is computed as

9i
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2n % 2w w"i fJfr-<
<R A- pcm = (8)- f f* (O'')> L (cosO)L (cosO'):;nap m pq

00 00

(3-20)

x expfj(p-n)K] sln(O) sin(') do' d*'@dOd4,

and <Bna' *p'qI> is computed siailarly. The joint statistical

moment <Fa(S ,$) FI (6', 4')> ia obtiined frot a knowledge of Zhe

waveguide modal toefficient excitation statistics, to wit:

XE<a a >1 (e4.F S,'

(3-21)

and similarly tor <Fb(oA ).Fb*(Sh, 9 ,)>

Finally, the joint statistical mcments <a a V> and <b b ,>
P' must be specified from theory or experiment. The deterministic

analysis is, of course, recovered from the statistical equations in the

limit of vanishing covariances C. for all indices V and p' .

The rigorour spherical wAve spectr;r analysis is considerably more

invoived than the plane wavc spectrum analysis. However, the spherical

wave spectrm technique has the very aesirable attribuLe of being

applicable to arbitrary araac.iements and rrientations of a near-field

antenna pair. Nonetbeles, computer run times may be excessive for

routine use of the SWS technique is its present "rigorous" iorm.

However, it appears that a substantial reduction in the computer run

time may be achieved withnaz seriously degrading the accuracy of the

SWS analysis by deriving approximate -eries representations of the

ixtegrals via either the residue calculus or replacement of the full

spherical wave series by asymptotic series. Moreover, it appears that
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further theoretical dnd numerical studies of the SWS tcchni.que would

expedite the development of valid PWS equations for analyzing arbitrary

antenia./obstacle/antenna geometries. Accordingly, the SWS technique is

considered to be , potentially valuable area for candidate further

study in future in-vestigations.

D. GTD Analysis

Relatively simple equations are presented in Rz-ference 30 for

estimating the couplin6 of power between cosited reflzctor antennas.

The equations were derived with aid of the GTD analysis. They are

applicable to situations whereby the "mainbeems" of the two antennas

ar3 noL directed toward each other. That is, the equations are

aDplicabl.a to "sidelohe-co-sidelobe" coupling situations. They are not

anplicable to "mainbeaa-to-mainbeam" or "mainbeam-to-sidelobe" coupling

situations. Thus, the -T equations complement the current PWS method

Trev ewted previously which is particularly well suited for the

a inbeam-to-mainbeam and mainbeam-to-sidelobe coupling siuations. It

shouts be noted that the equations lack the rigor a3sociated with the

?WS ard SWS analyses and that it is difficult to judge the absolute

a-curacy of the equations. Nevertheless, the equations are potentially

useful for "rough" engineering es " iatc-s of sidelobe-to-sidelobe

antenna coupling.

The simplified GTD coupling analysis can be illustrated by

considering t-ae coplaaar arra.agenot of two circular-aperture horn-fed

paraboloidal reflector antennas s1ouni in Figure 3- 17. The various

symbols shown on the figure are defirsed as

dl aperture diameter of Antenna 1,

d 2  aperture diameter of Antenna 2,

11 length of OP,

L2 = length of OQI,

L3 length of OQ2,

L4 length of QlP,

£5 - length of Q2P,

Z- separation between antenna centers.

93

: II



-9e

ANTENNA 2

P

Q2~

01 1

6 12

0

Figure 3-17. Secdeitn th lierisaesand the~
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The angles a,, 13, 61, 0, B, 62 open positive as shown.

Two different types of coupling are depicted in Figure 3-17.

These are (1) direct coupling of the feed horns along OP, (2) and

single diffraction coupling along O-QIP and also along OQ2-Q2 F

Thus, there are three contributions to the total coupling between the

antennas.

The author of Reference 24 calculates the coupling coefficient for

each type of coupling when only that particular coupling mechanism

exists. The coupling coefficient is defined as the ratic of the

received power to the transmitted power. The total coupling

coefficient r, when both types of coupling exist (implying three

contributions as noted in the preceeding paragraph) is computed as

n 11+n2+n3 + 2nn cos( )3-2)
I 24-n 3 1 2 osE 12) (-2

+ 2 n-- cos(C 2) + 2#Ffn cos(: )1 2 13

where

n- power coupling coefficient for direct OP coupling,

q2  power coupling coefficient for single diffraction

OQ 1 -QP coupling,

n3 - power coupling coefficient for single diffraction

OQ2-Q2P coupling.

and where E12 , C23, and 13 are the relative phase angles between the

electric fields arriving at P via paths indicated by the subscripts.

The power coupling coefiicients nl, n2, and n3 presented in

Reference 24 1.-y be written in our notation as

21G2 -

ni  - [ H2 (a2) 2 (3-23)
(4 LI)9
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=AG_1_G2OH2_(a 2 in2(a and (3-24)

- 161 4 dI 2 L.6

S3GrG2 [ 2

A 42(2t 0 .0). 2(2) sin2 (Y4. (3-25)

161T di. 32 6 z

where

A the wavelength in free space,

GI - the peak gain of feed horn 1, and

C2 - the peak gain of feed horn 2.

H1 and H-, in Equation (3-23) are the vectorial horn patterns with

azim.ithal and elevation vectorial components * and 0 The vector S1

and the vectorial pattern H2 appearing in Equation (3-24) are defined

with respect to the edge diffraction point coordinate system erected at

Q1 with 41 tangent to the edge and 01 perpendicular to the edge.

Similarly, S2 and H2 appearing in Equation 3-25 are defined with

respect to the edge diffraction point coordinaFe system erected at Q2

with 02 tangent to the edge and 02 perpendicular to the edge.

S1 and S2 are then written as

Si( 'I.,s) = H. (61)F, (0i, 0 ) 4i + H 0 (6i) F0 1(OiOs) 0
l

(3-26)

and

S2( Pi's ) - H012 F 2(0i'0s) 2 + H0 F0
(Qi,08) 02 (3-27)

where the notation H, 1 indicates the component of Pl with respect to

the coordinate system (01,01), etc. The angles of incidence Oi and the

angle: of scatter % appearing in the edge diffraction function F are
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a.iociated with at, edge point are, of course, specified with respect to

zhe particular edge point coordinates shown in Figure 3-18. F4q( 0 i,8 s)

au" 7 8j(5j 8 s) are computed as

cos[%l1s ra2c s sin'a
" .2 ( 3-2 6)

Fi(e6,e8) - cos(8) - cos(el)(

sin[!#-os[
.Fol(Ei,Os) 81 (3-27)1 (i,) coS(es) - cos(%) 37

where it is assumed that the scattering angle of interest is away from

the shadow boundary defined by e, - l i . This restriction can be

eliminated via the use of modified edge d.ffraction forulas as

presented in References [25,261. However, (3-26) and (3-27) are

satisfactory for our purposes.

This simplified version of the very powerful GTD analysis

technique can be -sed to make rapid computer estimates of out-of-band as

well as in-ba.d antenna coupling by specifying the feed horn patterns

of the two antennas over the frequency intervals of interest. it is

egain noted that the equations are applicable only to sidelnbo-to-

sidelobe coupling situations. Stochastic equations based on the

foregoing ,TD equations could be derived expressed in term or the mode

excitation coefficients. However, the NWS and/or the 311S tezhniqu-as are

envisioned as the more promising methods for stochastic couplig

analysis for arbitrary situations and, consequently, the GTh anet.ysis

was not pursued f,rther.

97

iruruuD r U~llrU i ttm



OE'Oj

Figure 3-1I3. Diffraction by a half-plane showing the
inciient (e)ani scatterbrg (0 ) angles
used in-th diffraction coefficlent.
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SECTION IV

SYSTI DEVICE EFFECTS

A. Introduction

The two main objectives for this task were (1) to develop a method

for analyzing the antenna pattern effects of higher order modes

generated and/or propagated by comson feed system devices and (2) to

assess the feasibility of deducing the mode excitations for a radiating

feed system from analysis of measured out-of-band pattern data. The

first objective has been achieved via the theory and equations

developed during the course of the research work on Task I and Task II

presented in Sections II arnd III, respectively. The results of the

research work pertaining to the second objective are presented and

discussed in submection B of this sectio- .

The timely completion of the required research work for this task

permitted a brief digression into another important aspect of the out-

of-band response of system devices. In particular, equations were

sotught to describe the influence of particular waveguiCe devices on the

excitation and subsequent propagation of out-of-band waveguide modes.

Three waveguide devices were considered in this exploratory study,

namely (1) coax-to-waveguide adapters, (2) radial bends, and (3)

ferrite phase shifters. Program constraints precluded a detailed

quantitative analysis of all three kinds of devices. Accordingly, the

research efforts were concentrated maiuly on the theoretical and

numerical analysis of a coax--to-wavegu ide adapter. The results of the

exploratory study are sumarized in subsection C.

B. Computation of Mode Coefficients From Measured Out-cf-Band

Pattern Data

The mode coefficients for the propagating modes of a radiating

feed system can be determined from a knowledge of the aperture

tangential electric fields. The aperture fields can be determined to

good approximation from the complex far-field electric field patterns

of the feed system.

The hypothetical experimental arrangement consisting of an

arbitrary feed systea terminating in a large metallic "ground plane" is
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shown in Figure 4-1. The feed system is assumed to conqist of (1) an

input section which, for exapple, might be a zoax-to-waveguide adapter

or a povar coupling iris, (2) passive and/or active devices, such as a

radial bend and a phase shifter, and (3) the radiative element, which

is an unflared straight waveguide section. Note that Che guide axis is

along the i coordinate and that tne y and z coordinates are the

transverse coordinates. This orientation of cooidinate axes is a

convenient one for the p-'oblem at hand.

A measurement is performed to determine the far-field complex

v torial electric field in the forward hemisphere. The measurement is

probably most efficiently accomplished via the planar near-field

measurement technique. The far-field electric field is then accurately

computed via established FFT processing of the near-field data (251.

The transverse electric fields i(y,a) in the aperture of the

radiating system may be computed accurately as

-(y,z) ='r V q Epq exp[-j(kypq y + kzqz)l (4-1)

where the cuefficient !pq is the complex far-Hield electric field in

the direction defined by (ky - kypq, kz - kzq) where

kypq - ko sin(q)sin(p), (4-2)

kgq - kocos(eq), and (4-3)

ko 0 27/A (4-4)

where A is the free space wavelengtb.

The mode coefficients are determined by solving the simultaneous

equations obtained from the continuity of the tangential compoaents of

the E and 8 fields at the aperture. The appropriate equations at the

aperture (x-0) may be written as

L Y (y,z) + Z b V_ (Ya) E %q q (y,-), and
K K K K K pqpq (4-)
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E Y (.,z)- b F. (y,z)- E r •-

K K K K K p q pq pq

'P (y,z) (4-6)
pq

where,

a - the complex excitation coefficient for the
r allowed Kth waveguide mode,

b = the omplex reflection coefficient for the
K Kth Vaeeguide mode,

-(+)

(y,z)- the transverse-to-x vectorial waveguide
electric field function for propagation
in tie (M) x-direction,

'(y.z)- exp [-~j (kypq y + kzq z) J(4-7)
pq

T the effective wave admittance dyadic for
pq the radiated fields, rpq - ko sin(eq)

cos p/wv , and

r = the wave admittance dyadic for the waveguide
Sfield functions.

The waveguide admittance .dyadic F is just

K

rKY-r K 48

where (r a /wu] for ?-to-x modes anc 11's wC/8 ] for T-to-x
iK I" KK

modes. The effective wave aaittance dyadic rpq for the radiated

fields is

r -r

pqq

where r p [kosin(Oq)cos(#p) ]/WP-
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The waveguide electric field functions are assumed to be arranged

in ascending order of cut-off frequency. The electric fi."Ldu for the

TE and m modes that have the same cutoff frequency require special

handling in order to preserve a desirable orthogonality prorerty of the

mode fields. In particular, if UK (y,z) is L TE mode field with cut-

off wavelength X. and V (y,z) is the Th mode field with the same cut-

off wavelength, the waveguide field functions Y (yz) and (y,z) areK K+1 r

taken to be

4 +
F(y,z) - (yz), and (4-10)

+ + +

where

C f UK(.-Z1-V (y,z)dyda (4-12)

K _at * -+
U A (y,z)] U U V(y,z)dydz

a ,a is set equal to tern for any pair of modes that have different cut-

off wavelengths. The integrals are evaluated over the guide cross

section.

The a-polarized and y-polarized electric fields for the TE

waveguide modes traveling in the positive x-direction are

+ JW (+na

Co[1 " (Z +b )] Iexp [+JB x1 and (4-13)

+ + UwJ!)n
U2 (ni;)2 coo - (y +

a a02
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(b A.)]ex (4-14)

where

~Vk' - nd -mw
K 0 a b (4-_5

where the n and m indices are chosen based on the mode ordering scheme

previously dicussed. Similarly, the z-polarized and y-polarized

electric fields for the TM modes are

+

[v (y, )]: - b fain [I!_W (y +
K z [()2 + ( ) i -(y

b a

CoN ( + b and (4-16)

co~~~ s )-- -+) x ? n

[V(y'z)] = 2 . Cos - (y +(.)2 + (-)
ba

s in (z + DIexp itJ~] (4-17)

It should be noted here thet mode sets other than the mode sets TE and

TM to the longitudinal axis can be employed. Howver, this is

frequently a convenient set of modes and serves to illustrate the basic

theory and equations.
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The solution for tue mode coefficients is readily achieved by (1)

scalarly multiplying Equation (4-6) by (+ and itegraiug both

sides of the equation 'ver the guide cross section: (2) scalarly

multiplying Equation (4-5) by (7 ) - and integrating both sides
K

of the equation over the guide cross section, making use of the

orthogonality of the mod-. fields to retain only the s t terns, and

colving the simultaneous equations in the unknown a and b for a
K K C

The solution for a so obtained is

a = p q KQ* K _ (4-18)
K a bf2 2 +

2ff K ~(Y' Z) 1g K i(y,z)dzdy
-a -b

2 2

where

a b
T 2 Q (y, Z)[T +(y.2)] * drdy (4-19)

-A -
2 2

is the ::plex conjugate of the vectorial far-field electric field

pattern radiat by the Kth waveguide node. All of the quantities on

the right-hand side of Equations (4-18) and (4-19) are kaown from

experiment or theory and, hence, the coefficients a may be computed.K

C. Sumtary of Out-of-land Waveguide Device Characteristics

The emphasis in this brief study was on oti.aining a qualitative

understanding of the basic out-of-band mode exitations and propagation

characteristics of (I) a coax-to-waveguide adapter, (2) radial bends,

and (3) ferrite phase shifter. A detailed quantitative study of each

device vae outside the scope of these exploratory investigations due to

the complexity of the solutions obtained for nultimoding vaveguides,

Accordingly, attention was focused primarily on the coax-to-waveguide

adapter. The key analytical results for the radial bends and the

ferrite phase shifter are first briefly suamarized in the following

105



paragraphs. the salient Analytical numerical results for the coax-to-

waveguide adapter are then presented and dircussed.

1. Waveguide Radial Bends

The propagation of electromeagnetic energy through radial "E-
plane" end "H-plane" waveguide bends hu., bw ar studied by a large number
of authors during the last 45 years. A ,artial list of references is

included in Section VII as References 26 through 34. Out-of-band as

[iell as in-band propagat.on has been addressed. Rigorous 3olutions for

the electric fields it beds are presented in References 26, 31, 32,

rnd 33 in terms of infinite series of Bessel functions. The matrix

solution due to Rice [ 301 is also capable of providing rigorous

results. Rigorous solutions for the generation of higher order modes

et the junction o! straight and curved portions of zvaveguide run have

elsa been aerived [32). The rigorous solutior.s are generaily valid for
"sharp" bends as vell as for "gradual" bends. A sharp bend is defined
herein as one for which AR/R s I and a gradual bend is on for which

ANR/R -<1, where R is the bend radius and AIt is the thickness of the

ilk bend aloa, 9, as per Figure 4-2.

Thc approximate analysis of a gradual R-plmne band by Jouget

[27,283 furnishes valuable physical insight as well as useful

approximate equations for the interodal coupling coefficients at the

junction of the straight and curved guides. The corresponding analysis

for the round waveguides are also presented by Jouget in a sera-ate

paper (29]- Expressions for the mode cutoff frequencies and the mode

phase velocities in the curved portions of the vav,'guide are also

derivted. The corresponding analysis for an Z-plane bend is presented

to second order by Levin [ 34]. Good engineering approximations for the

mode conversion coefficients at the entrance and/or exit junctions are

possible even or modarately sha--p tends where 6i/R 0.1.

2. Ferrite Phase Shifter

The :%sin difficulty in the analysis of a wareguide containing

4 ferrite pha-e shifter is in obtaining a valid representation for the

electric field or the magnetic field in the portion of the guide

containing the ferrite slab. Once these characteristic fields are

obtained, the usual procedute of requiring continuity of the fields at
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the entrance an4 exit faces of the slab can be invoked. This leads, ot

course, to a set of simultaneous equations that are readily solved to

provide reflection and traisvission coefficients as functions of the

phase shifter control setting for a specified incident mode. For

example, the fields for a rectangular guide containing a ferrite slab

extending fully across one dimension of the guide, as per Figure 4-3,

can be solved exactly. However, the exact solution for sLab seometry

shown in Figure 4-4 is too complex to be useful and, hence, approximate

techniques are sought.

The ferrite phase shifter is generally a lossy, anisotropic medium

and, consequently, the application of perturbational or variational

techniques is more complex than for typical waveguide problems 1 11,35].

Nonetheless, the application of variational techn;ques to the ferrite

phase shifter problem is potentially very useful. The equations

prescnted by Moshen [36) appear to be particularly well-suited for this

problem. Moshen derives a stationary quantity F that is valid for a

lossy, anisotropic, inhosogeneous medium which, for a source free

region, is

- L+ -[ x EH]s + [; X ']
S a

"++ [ ]s - 5J) (4-20)

where quantities of the form [A,%]s and I A,R c denote the "inner

products"

[AB] = "ff ds and (4-21)

S 

4'ABc f A ixl t do, (4-22)
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respectively. The symbols K, H, and j denote the electric field

vector, the magnetic fiel$ intensity 'ector, and the magnetic field

vector, consecutively. The inner product [A,iJs is evaluated over the

guide cross sec:ion. The inner product [AB] c is evaluated around the

neriphery of the guide cross section. The suoeracript symbol t

Jenctes the adjoint of the field quantity to which it is appended.

A variational expression for the propagation constant in the

ferrite phare shifter can be obtained from Equation (4-20). r4e trial

field E(xy,z) may be conveniently chosen as the superposition of mode

fields *(xy,z) for the empty waveguide, to wit:

E(x,y,z) - C F (x,y,z), (4-23)
IC KK

The trial i and B vectors are obtained from Equation (4-23) via the

Maxwell curl relation and the constitutive relation B =  El , where

p is the permeability tensor [34] fot the ferrite slab. The expansion

coefficients Ck which extremize the propagation coefficient are found

by numerically solving the set of simultaneous equations obtained from

the variational equations. Thus, the electric field E given by

Equation (4-23) is determined and can thence be employed in the

analysis and computation of reflection and transmi.sion coefficients

for the ferrite section.

3. Study oi the Coax-to-Waveguide Adapter Device

The goal of this study is to obtain a qualitative

uncerstanding of the higher order mode excitation and propagation

characteristics of the coax-to-waveguide adapter. The results of this

study provide useful insight into the basic out-of-band characteristics

of a coax-to-waveguide adapter.

The a3lution for the mode excitation coefficients for the coax-to-

wavegiide adapter shown in Figure 4-5 can be obtained with the aid of

equations given in Collin [34]. Note that y and x are transverse

coordinates &ad the longitudinal axis of the guide is along z. In

particular, the dyadic Green function G(x',y' ,z' fx,y,z) derived by

A111
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Collin for an infinitesimal electric dipole, located at (x',y',uO) in

a rectangular waveguide is applicable to both in-band and out-of-band

waveguides. The magnetic vector potential A - Ayy produced by an

assumed current density J - y Josin [ko(d-y')] on the probe and is

derived by integrating the product G * J along the probe surface So, to

wit:

eWx,y,:) -G(x',y',z'/x,y,z) -J~y')da' (4-24)

so
Expressior.s for E(x.y,z) and B(x,y,z) are thcn readily obtained via the

well known operations

E(x,y,Z) - -jw A(x,y,z) + V(V4) (4-25)

and

H(x,y,z) - -L (Oxi) (4-26)

The electric field I(x,y,z) obtained from Equation (4-25) can be

written as an expansion.

E(x,y,z) - E b x(xyz) (4-27)-- " n anr

where a - 0,1,2,3,4,.... and n - odd positive integer n a 1,3,5,7,

the selection of the values of index n being imposed by the requirement

that the vector potential M(x,y,zs# 0. The expansion functions Xn, are

the TMlI vaveguide mode functions which have no component of H along

the transverse y direction. (Thus, one can anticipate that

longitudinal powei flow is associated only with the y-polarized

electric fields of the TXL modes since 1xHy - 0 }. The coefficients

bu are
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-- p-j z -e]
expI-j8 nz])- exp(-jSB(z+L)]

r~~~ sn 1J 0 (cos(k d) - coui(mv )

r-, s•n'I1 0

o 2j w .r %
L -I (4-28)

where I = I form 0

and Eo 2 otherwise.

The vector function Xn(x,y,) is expressed in terms of its components

as

-2 n2
jw ab abO0

sin [--(y + } (4-29)

---~2u° 1 + 1 ()21
Xnm~y [ ab P Cp W

= sin [_ (x + )] cos [M (y + b

(4-30)

-., {[(mj-)Jsnm1 sin [- (x +-l
ba 2

cos (y + b1}. (4-31)
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The electric field E(x,y,z) can be expressed with the aid of Equation

(4-25) as

E1x ys) - 1 3 2AKhy { 0 p 30 axKy + 2 y+ -s (4-32)

and R(x,yz) via Equation (4-26) as

I A aA

C-xyz) --Y- Z - -y (4-33)

The average power density Sz transported along the z direction is

SA Z Re L Ey (4-34)

u B

where S is the pointin6 vector defined as

Re(Exg*) (4-35)

H* the complex conjugate magnetic field vector and a the unit vector in

the direction of propagation. Utilizing Equations (4-24 to 4-36), a

closed furs expression for the power Pnn propagated in a coax-to-

waveguide adapter can be derived by integrating Equation (4-35) over

the guide cross section to obtain
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rF
F e 2[cosk d - osmw d) 2
P = -Re -- j 2 s in 2  k2 2-2-2
nn 2 ab n m om 0w2 _2

b o
r*

[exp(-JS z) - exp I-JS (z+1)] lexp(-JiBz) - exp (-J (z+t)']i'nm M
j Sjo

12
i (M)2 ( 4-36)

0 0

where Re means "real part of" and where all other symbols have been

defined previously. The total power propagating along the waveguide is

partitioned among the differant possible TMYM modes that have n > 0 for

a particular operating frequency. Calculations of the power

distribution among the different higher order modes vere made for

standard S-band coax-to-waveguide adapters for frequencies ranging from

3.0 to 10.0 GHz. The values of the various physical parameters of the

adapter and waveguide for the numerical study are as follows:

a - 7.112 cm
b = 3.302 cm
d - 1.9 cm
z - 3.5 cm
k - 2.4 cm

The caiculations were performed on the assumption of the total power

radiated to be equal to 1.0 watt corresponding to a dipole resistance R

= 500 ohms and a current J. - 45 milliamps.

It should be noted again that the power flow down the guide is

associated entirely with the y-polarized component of the electric

field of the excited modes. The x-component of the electric field does

not contribute to the longitudinal power flow since the y componet of

the magnetic field is zero for the TN.j modes.

116



Results of the computer calculations are tabulated for selected

frequencies in Table 4-1. In particular, the modal power flow for each

excited TMYnm modes is tabulated as the percentage of the total power

flowing in all of the excited modes'for the in-band frequency of 3. GHz

and for the out-of-band frequencies of 6.0 GHz, 7.5 GHz, 9.0 GHz, 9.5

Giz, and 10.0 GHz. Inspecition of the tabulated data shows how the total

power flow is partitioned among the excited modes for each frequency.

The dispersive character of the waveguide over the out-of-band frequency

range from 6.0 GHz to 10.0 GHz is clearly evident in the data. The

frequency sensitivity of the modal power flow distributions for the

frequencies of 6.0 GHz, 7.5 GHz, 9.0 GHz, and 9.5 GHz is partially due

to the fact that the total power flow is partitioned among 2 modes, 3

modes, 4 modes and 5 modes, consecutively. However, considerable

frequency sensitivity is also evidenced for the out-of-band frequencies

of 9.5 GHz and 10.0 GHz, both of which have the total power flow

distributed among the same 5 TMY modes.

It should be noted that the analysis of a coax-to-waveguide

adapter having a non-filamentary current probe can be obtained via the

equations presented in Reference 35 and herein. The Green function for

empty rectangular waveguide presented in Chapter 7 of Reference 35 must

be numerically integrated over the surface of the current probe that is

being modeled. It would be particularly beneficial to analyze the out-

of-band behavior of a coax-to-waveguide adapter having the shape of an

elongated "teardrop" found in many commercial adapters. Adapters which

have a concentric dielectric sleeve enclosing the current probe require

the use of a more complicated Green function. It would also be of

considerable practical value to numerically analyze the out-of-band

characteristics of the dielectrically-sleeved adapters.
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TABLE 4-1

MODAL POWER FLOW PCR Tim rW. MODES FOR TE9
INDICATED FREQUENCIES FOR WR-284 WAVEGUIDE

EXCIW9D BY AR IDALIZED COAX-TO-'IAVEGUIDE ADAPTER
HAVING A FILAMENTARY CURRENT PROBE*

Frequency TMY Modes Modal Pover Flow

(%Hz) (nm indices) (Z of Total)

3.0 10 100.0

6.0 10 6.96
1i 93.04

7.5 10 11.99
11 7.00
30 81.01

9.0 10 47.05
11 13.62
30 0.45
31 38.88

9.5 10 47.83
11 17.86
30 10.64
31 6.40
12 17.27

10.0 10 32.86
II 11.51
30 20.33
31 0.00
12 35.30

*14 waveguide nodes are defined with respect to the coordinate
system depicted in Figure 4-5.

118



SECTION V

SITE EFFECTS

A. Introduction

It is well known that the performance of an antenna can be

significantly degraded due to scattering of electromagnetic energy from

metallic or dielectric structures located within the radiating near-

field of the antenna. Several techniques are available for analyzing

the effects of near-field obstacles for a specified operating

frequency. Prominent among these techniques are aperture integration,

the Geometrical Theory of Diffraction (GTD), and the Plane Wave

Spectrum Scattering (PWSS) analysis. Although any of these techniques

could be used "or out-of-band frequency analysis, they have generally

been a1pl1pid to the analysis of in-band effects at a few selected

frequencies of interest.

The analysis of the distortion of the envelope of a narrow time

pulse requires a knowledge of the frequency domain antenna/obstacle

response over a frequency inteval exceeding the bandwidth of the pulse.

Alternatively, a direct time domain analysis can be formulated and

applied to near-field scattering problems, as per Reference[37 ]

However, a frequency domain analysis appears to be more flexible and

appropriate for the wide variety of antenna/scattering situations that

are encountered at Army directive antenna installations. Moreover,

experience has shown that the PWSS method of antenna/obstacle analysis

is particularly well suited for analyzing near-field obstacle effects.

Accordingly, the frequency domain approach employing the PWSS

scattering technique has been used to study the effects of near-field

obstacles on the wideband CW and pulsed response of directive antennas

for both in-band and out-of-band frequencies. The basic theory and

equations are presented and discussed in subsection B, and the results

of a numerical study of wideband site effects are summarized in

subcection C.

B. PWSS Formulation

The monochromatic PWSS analysis is readily adapted to analyze

near-field obstacle effects for wideband CW or pulsed systems. The
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theory and equations for the deterministic monochromatic PWSS are

outlined first.

1. Plane Wave Spectrus Analysis Concept

The basic theory of the Plane Wave Spectrum Scattering Matrix

analysis is presented in Referenc-is 22 and 38 . A briefp somewhat

heuristic synopsis is presented ti1re. Figure 5-1 illustrates the basic

concept and the antenna/obstacle geometry. Conceptually, the antenna

Plane Wave Spectrum (NWS) referred to the antenna aperture propagates

in the near-field and ii incident upon an obstacle. Each component

plane wave in the antenna spectrum excites a complete spectrum of

obstacle scattered plane waves. The total scattered spectrum is thus

the superposition of the scattered plane wave spectra due to the

incident antenna spectrum.

If the antenna aperture is located in the x - 0 plane, the antenna

PWS A(ky,kz ) can be expressed as,

J(k y4-k Z)
A(kykz) = J Et(O,y,z) e dydz (, (-)

where kx a V. sine cos c, ky k O sie sin, k z - ko cos0, kO =

27/X, Et(O,y,z) - 9Ey(O,y,z) + iEz(O,y,z) is the electric field

transverse to x and an e+j3t tine dependence is suppressed.

Equation (5-I) expresses the transverse antenna spectrum A(ky,k.)

as thp Fourier transformation of the transverse apertare electric field

EI. via ite inverse transformation the transverse to x electric field

in the charge-free region x > 0 can be expressed as 111,35 1

E~(r ff Ck. .Y k z dk ydk2 z (5-2)

where k - ikx v 9ky + ikz and r - ir - ix + gy + iz.

In the Ear-field where x >> 0, &n asymptotic expression can be

derived by the method ot steepest descent so,

-jk 0r

E (r,e,,) j2wk A(k ,k) "- (5-3)
t X yo zo r
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where the vavenubers kyo and kzo are the values of k. and k z at the

saddle point of the integral of Equation (5-2).

The far-zone scattered field due to a single component of the

plane wave spectrum incident on the obstacle shown in Figure 5-1 can be

expressed as

k ( k ;k(ky~k) , (5-4)

where A(k,Ir3 ) - A(ky,k z ) e-Jki "R, i denotes the obstacle location

and is the plane wave to spherical wave scattering dyad for the

obstacle with phase reference at the obstacle location. The incident

wavenumber k is Siwen by

k z ,'2 (k ) (k) 7 z (5-5)
0y° + a7

and the term cu-' " shifts the antenna unectrue to the obstacle

reference center located at i.

For our purpose, it is convenient to express Equation (5-4) as

z'%,, (k - k , •) - N 7% (5-6
7Z 7

where by using the asymptotic relation of Equation (5-3)

S(k ,k ;kk 1) - d (k,k ;kk) . (5-7)

is the plane vnve spect-tm scattering dyad that specifies the obstacle

scattered plcne wave spectrum for the case of excitation by an incident

plan-! wave traveling in the direction defined by (ky,ks).

The total obstacle scattered plane wave spectrum can now be

expressed as a superposition of the scattered spectra due to each

component of the incident antenna spectrum as,
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k Lk

P ~ k ,(y~. k ) - A (k ,k ) dk' dki , (5-8)

-kzL k'

where kyL and kzg are the vavenuinber limits of the incident spectrum.

In practice, it is more convenient to evaluate Equation (5-8) in

the angle (e,,O) space since most computer programs for scattering

analysis employ (6,4) coordinates. This transformation results in,

S(6.#) - -k 0 f f'( e.~~ A(81 ' 1) (5-9)

L O
sin2G6 cos 1 do 1 d#1

where OL and PL are the angular limits on the incident spectrum space.

It is also convenient to express the scattering' dyad in terms of

spherical coordinents as

S(,+O##) 
(5-10)

64 S 04 60B

where S., is the scattering function for the #--polarized component of

the scattered field for a 0-polarized incident plane wave and so

forth. It is apparent that this form fits nicely with scattering

analyses expressed in terms of tile conventional TE and Th incident

plane wave modes, and the scattertd spectra for the obstacle are

readily expressed in terms of orthogonal (0,0) components 1 11].

The resulting total spectrum is given by the sum of the antenna

and scattered spectra in the (0,#) space as.
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Atotal (o* i(.)+;e). (-l

and the composite far-zone pattern can be readily obtained from the

total spectrum.

which is derived vi3 Zhe Fourier

transformation of the transverse to i electric field E(O,y,z) is termed

Lhe "transverse vectorial spectrua"21 ] . Since fat-zone radiation

patterns are conventionally expressed in terms of the angular (0,4)

coordinates, and it is sometimes convenient to evaluatA the scattering

matrix for (e,#) coordinates, it is often necessary to convert the

transverse vectorial spectrum expressed in the (x,y,z) cartesian

coordinates to ths (0t,) angular coordinates. To accomplish this

transformation, we define after Kerns[21 3, the orthogonal unit ve:tors

h " < k + ik.) (-
al +k Z (5-12)

4 2 + k2

k k

and

2  - 1 x 1 (5 13)

Note that the unit vectors ij and i2 are re3pectively "radial" and

"tangential" unit vectors associated with polar coordinates ir. the (y,z)

plane. The individual plane wave coapon'tts of the spectra propagate

in the plane defined by K1 and the x axis. Thus an electric field

aligned with K I is parallel to the plane of incidence (Em or

Transverse Magaetic) and an electric field aligned with 12 is

perpendicular to the plane of incidence (EoE or Transverse Electric).

The scalsr spectral density functions c~rresponding to the basis

vecturs KI and 92 for the outgoing vectorial spectrum cre deficed as

b(1,K) - Z A) (51)

b(2,K)... .j(.)..
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where K - yky + zk z

Finally, the complete vectorial spectrum a(K) which includes all

of the cartesian (x,y,z) components of the outgoing spectrum is given

by the relatin

covete b ,K) [ KI i x S + b(2,K) K2 i ca -!ji
X

6thete

The complet-- cartesian based vectorial spectrum i(i) can then be

converted to the angular (r,6,i) basis vectors via the relations

sin; coso + a cosO coaO - : sin ,
y r sine sin + a cone sin + b cos a nd r,5-16)

zrcosO - e sine

The foregoing analysis which was described for a single mast

obstacle is a,)plicable to any number of obstacles. It is only

necessary to specify the scattering dyad S for the obstacle cluster

and the vector 1 Eroa the avtenna to a designated phase reference

center.

The PWS dyad S for the obstacle or group of obstacles may be

specified from theory or experiment. The NWS dyad can be constructed

frma GTD, physical optics or the Method of Moments solutions. ThG PWS

dyad for multiple obstacles must account -cr wltiple scattering among

the obttacles in order to achieve accurate results for closety spaced

scatterers E39 ] . However, accurate approximate equations are

available only for collections of parallel cyli'%nders cr spheres of

small diameter. Generalized practical techniques for constructing the

PWS dyad for closely spaced obstacles of arbitrary shapes are not

available at the presen time. Accordingly, this remains as one of the

most important problem areas in the analysis of site effects for many

real-world aatenna installations.

The PWS technique is readily adapted for wideband antenna analysis.
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The extension to wideband stochastic in-band and out-of-band situations

is presented and discussed in the following paragrapt.,

2. Wideband Analysis

It will be advantageous to write the total electric field for

radian frequency w a 2w f as

F E( ,r.O0,) = ih(8O.)exp[-jw(r/c)]
cr (5-17)

LAa (w,0) + exp[jw R AS (,,)]

where

( wt,r,O ,0 ) - total field,

h ( e,o ) -sine cost

K a sin8 cos x + sine sino y + cose z

c the speed of light in free apace

where the superscripts a and P on A denote the antenna and scatterer,

respectively. The scattered antenna spectrum V8 in Equation (5-17) is

referred to a coordinate origin located in the geometrical center of

the scatter. The exponential factor exp [jw (K i/C1 "moves" the

scattered spectrum to location of the origin of the antenna rotation

coordin&tes. The quantity Cl/cr) will be suppressed in the remaining

equatijis, and tht total field will be written as E( w,8 , ) in

recognition that the factor (i/cr) is being suppressed.

The antenna spectrum function A( U l , ) for an overmoded

reflector antenna is comprised of the weighted sum of spectrums for all

of the propagating modes ;r the antenna feed system. Hence, the

resultant antenna spectrum is

(W ,o ) 0 a (w)t ( o w, '0 3-

where

a (w ) the complex excitation ccefficient for the Pth
waveguide mode -or frequency w, and
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A (w ,O ,* ) - the antenna spectrum produced by the pth wavesuide
mode.

It then follows that the scattered spectrum function 1s(w 
,w ,* ) is

As( w, 0, a (a . (,o,,) (5-19)

where

8L - -
-s~e ,W).2 [ S (wjn, ; e',#')- a(w,0 ,l 41'

0 L -4

expl-j ![(sin(8)cos(W))]X + [sin(6')sin(O')IY + [cos(6')]Z

.sin2 (e,)cos(f')d ' dO'} (5-20)

The deterministic power density P( w 0, *) at observation angles

( 0, 0) for frequency w is proportlonal to E (w, 0, 6) ( wG ,o )

and is written explicitly in terms of the complex mode excitation

coefficients a(w ) as

, )= Z ,E a,(w) a (M) P ,(W.,e,) (5-21)

where
22a* a s

P (,, ) = 2h 2(0,#)[A a,(w,8,,)A (We, ) + A ,(wO,t)As(w,0,0)

+ a*

" exp [-jw ] A.a,(w,0, )A * (w,0,0)] (5-22)
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The statistical average power density <PC ,P(,w )>is obtained from

Equttion (5-21) by statistically averaging over the product a*CW )a (w)

of the complex mode excitet'on coefficients. The waveguide mode

excitations generally are correlated, and so the stochastic average value

<PC w, 6, 4)> of the power density is written in the form

, B "> a ) > <a (u)>P, (w,9,A)

+ E c?(w)P (w,61)

+ Z'Z'c , (w)P, (W,6,4) (5-23)

where

S 2 (w) - the variance of the pth mode coefficient,
U
C (w) - the covariance function for the th mode coefficient
I'P and the conjugate of the V , th mode, and

where the primes on the last double sum signify that only terms 1 # I '

are included in the sum.

Equations (5-21) and (5-23) are the appropriate equations for

obtaining average power pacterns over designated frequency intervals for

deterministic and randr -ituations, respectively. This proces3 has

been described and numerically simulated in Section II for a phased

array antenna. Equations for time domain analysis are needed.

Accordingly, attention is focused on the time domain response in the

fol lowing paragraphs.

The time domain electric field E(t, 0,0 ) can be computed as the

discrete Fourier transform of the frequency domain response

E n ,,)as

E(t.O,4) E E(w n,,*)H(w )exp[jwnt ]  (5-24)
n n(5
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where H( wn ) is the pulse spectrum function and where the summation is

over a set of frequencies exceeding twice the bandwidth 
of the input pulse

spectrum. The T( w , 0 , I ) in Equation (5-24) are the frequency domain

fields obte.ined when the input frequency spectrum is uniformly weighted

in mplitude. The time domain power density P(t, 6, 4) proportional to

E*(t, 0, *)>(t, 6,*) and is written explicitly as

P(t,6,$) = -2 S, f S (W r,,O'*(W '6,O)I)*(Wn (Wn)

expf(w n--n,)tj 1 (5-25)

This equation for P(t, 0, 4) can be expressed directly in terms of the

mode propagation coefficients a( w) as

P(t0,O) I2 h2 (6.0) E ,E n  ,Z, { a,(w )a (0n n n

71ne np v 1 n v n n n

H (w ,)H(An)exp[j (L _ nw Pn'ni' (03 ' nO.@) (
n n' n c n W n'n

(5-26)

where

-a-*

P ninp', u(Wn, ,,n )O,+€)= [APIN (ja, ,+)e (-n O9,0')

+AsG ,,o, ¢),X(n o,n p n

+is 8a -

+ expjw

+nepj-jW CR Ap ns Cy n(

(5-27)
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and where all other symbols have been previously defined. Equation (5-26)

is the appropriate equation for computing the power density envelope of

the radiated pulse at the far-field observation point ( 6,+ ) for a

specified input time pulse whose spectrum is H( wn). The pulse amplitude

envelope is, of course, the square root of P(t.8 e f). The statistical

average value of the power density envelope of the time pulse is obtained

by statistically averaging over the mode coefficient products a ,(w ,)

a Wn) Making use of the fact that the mode coefficients for

different frequencies are uncorrelated, the statistical average value

< P(t, 04 )> of Ptt,8 , 4) is written as

I- 2 h2(8,) 1n, 2h25 , Z(<a ,Gan,> <a (wt)>

(nt a)

wnWn R (W n' )H(n)exp[j(w n'-w n)r/cJ" P n'n , ( (Wn'n18 ' )}

n 1Vn n l+ nZ , Z{wnH(wo)H(wn )

- P n (P d C n, (u ,8 ) } (5-28)

The statistical average value of the envelope of the pulse amplitude

cannot be obtained by taking the square root of Equation (5-28) because

the average value of the square root of a random variable is not equal

to the square root of the average value. The statistical average value

of the amplitude of the pulse can be computed numerically with the aid

of the Nakagami p.d.f. if it is needed. Hcvever, the statistical

average value of the envelope of the pulse power density given by

Equation (5-28) is the quantity of interest in this study.

C. Time Domain SimuLations

Numerical computcrions were performed to compute the pulse

envelope poter density of non-random pulses -tdiated by a waveguide

horn-fed reflector antenna for both in-band and out-of-band operation

in the presence of a nearby metallic cylinder. The computations were

mst4e with aid of existing computer programs APAT? and HZD previously
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developed at Georgia Tech[ 6 ,38]. APATT was used to generate the

clear-site in-band and out-of-band antenna patterns as a function of

frequency. HBD was employed to compute the total electriz. fiell

(antenna * scatterer) versus frequency for the antenna/obstacle

situations. The radiated pulse power density was calculated via

Equation (5-21).

The antenna used for the simulations is a 4-foot diameter

paraboloidal reflector antenna fed by a waveguide horn. The design in-

ba-:d center rrequency is 3.0 GHz and the design in-band antenna

polarization is vertical. The wi-veguide portion of the feed system

consists of a 6-inch long sectiot of standard WR- S-band waveguide

excited by a coax-to-waveguide adapter. -*he antenna operates in the

presence of a 12-foot tall, 2-foot diametcr metal cylinder located

within the near-field of the antenna.

Plots of the radiated pulse power density envelope are shown in

Figures 5-2 through 5-7 for a single input rectangular pulse of two

nanoseconds duration. Figures 5-2 and 5-3 show the radiated pulses for

in-band operation of the antenna while Figures '-4 through 5-7 show the

radiated pulses for out-of-band operation of the antenna. The plots

are sequenced as folltws. Figures -2 and 5-3 show the radiated pulse

in the antenna boresight (0-degree) directiun tor the clear site and

the blocked condition, respectively. Figures 5-4 and 5-5 show the out-

of-band radiated pulse in the boresight direction antenna boresight

for clear-site and blocked operation, respectively. Similarly, Figures

5-6 and 5-7 show the out-of-band radiated pulse in a sidelobe region

for the clear site and blocked situations, respectively. For the

blocked case, the metal cylinder was located six feet away from the

antenna alcng the 50 radial. The four out-of-band figures are

sequenced in the same sanntr and the obstacle was located at the same

position just desc:ibed for the in-band computations.

The in-band pulses were computed from the antenna or

autenna/obstacle electric field for frequencies from 2.0 GCz to 4.0 GHz

in 0.05 GHz steps. Similarly, the out-of-band pulses were computed

from the antenna or antenna/obstacle elecric fields for frequencies

from 5.5 CIzto7.5 GHr in 0.05 C)4 steps. The pulse carrier frequencies
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fer the in-band and out-of-band pulses are 3.0 CGfz and 6.5 Cflz,

respectively.

The weveguide power flow for the in-band computations was entirely

in the TEl0 mode. The vav.guida power flow was randomly distributed

among the allowed modes for the out-of-band computations. In

particular, the mode coefficients at each incremental frequency were

obtained from a random draw via a pseudo-random number generator. The

statistical average power for each allowed mode was chosen to be

(1.0/N) watt, where N is the total number of allowed modea at a

particular frequency.

The iu-band pulses displayed in Figures 5-2 and 5-3 are noticeably

distorted. In particular, the radiated pulses for both the clear-site
and partially blocked situations are characterized by the appearance of

time sidelobes and noticeable increase in the pulsewidth, al expected

from theory. The pulse for the partially blocked antenna suffers less

distortion than the pulse for the unobstructed antenna. This result is

attributed to the Zact that the variations in the maplitudes 4nd phases
of frequency domair electric filds are less dramtic for the partially

blocked antenna than for the unobstructed antenna.

The out-of-band pulses displayed in Figures 5-4 through 5-7 are

severely distorted. The out-of-band pulses in the antenna boresight

direction are considerably more distorted than their in-band

counterparts. Of course, this result is expected because the electric

field varies more dramatically over the out-of-band frequency interval

than for the in-band frequency interval. The out-of-band pulse in the

boresight direction for the unobstructed antenna does not resemble the

input 2.0 nanosecond rectangular pulse. However, the out-of-band pulse

in the boresight direction for the partially blocked antenna does

resemble a rectangular pulse and the distortion is manifested prunarily

in the appearance of time sidelobes. The trend toward smaller pulse

distortion for the partially blocked antenna for the puls,s in the

boresight direction is also evident in Figures 5-6 and 5-7 for the

pulses radiated in the sidelobe directions.

The observed trend toward less distortion for the partially

blocked antesina than for the unobstructed antenna is attributed to the

D38 l~s i
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moderatinf, effect of the scattering obstacle on the variations of the

amplitude and phases of the electric field over the 2.0 GHz frequency

intervaL. However, it should be noted that the 2.0 foot cylinder is

large ii\ terms of wavelength and, consequently, the scattered fields

are less frequency sensitive than the scattered fields for resonant

scatterers. Accordingly, it would be prenature to generalize the

distortion results to other scattering environments involving

structures that have dimensiona cumperable to the wavelengths in the

pulse spectrum, particularly those environments iihere dielectric

scatterers are present. Additional analytical, numerical, and

experimental research is needed in order to characterize the wideband

cw and pulsed effects of arbitrary scattering environments.
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SECTION V1

CONCLUDIIG REMARKS AND RECOMMENDATTONS

The research work described herein meets or exceeds the stated

objectives for this basic research program. The overall main objective

was to advance the state of knowledge concernin- gear-field theory and

techniques for wideband radiating rysteas at in-band and our-of-bard

freqLencits. This was achieved by the successful completion of for

research tasks. The task objectives and the key results for each task

are described below. These results are followed by recomendations for

further research work in the four task areas.

A. Sumsary of Results

Task 1. Provide a near-field methodology to characterize

electromagnetic emitter radiation patterns at in-band and out-of-band

fretquencies for wide banddidth radiators. The objective of this task

was to develop the appropriate theory and equations based on

statistical analysis techniques for efficient characterization of

wideband radiators.

The theory and equations were developed for characterizing the

radiation patterns of wideband cw or pulsed antennas over both in-band

and out-of-band frequency intervals from measured data collected --ia

near-field measurament techniques. The results are applicabla to

either phased array or reflector antennas. Numerical simulations were

performed for (1) a 20-element out-of-band waveguide phased arra- with

no inter-element coupling. The effect of statistical correlations of

the near-field data was studied and methods for handling correlation

effects were derived. Useful approximations for the probability

density function for the radiated power pattern statistics for

correlpted sources were also identified.

Tbe key results obtained via the Task 1 efforts may be summarized

as follows:

(i) The statistical average patterns arki standard deviations
at selected frequencies can prov. e a very succinct

engineering description ci the imporiant DMC characteristics
of wideband C1 multimoding antennas. The statistical
average patterns and standard deviations are a practical
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alternative to the comparatively more expensive and
cumbersome Monte Catlo simulations.

(2) The statistical average pattern for a given frequency
may be computed from a knowledge of the following near-

field statistical parareters:

(a) statistical average value of the electric field
at all near-field measurement points,

(b) the standard deviation of the electric field at
all measurement points, and

(c) the covariance functions for the electric fields
at all different near-field measurement points.

(3) The statistical average pattern versus time for a pulscd
system depends on all of the above near-field stastistical
parameters listed ia Item 2, and the following far-field

statistical parametars:

(a) the statistical average value of the far-field
electric field at all frequencies in the frequency
band,

(b) the standard deviation of the far-field electric
field at all frequencies in the frequency band, and

(c) the covariance functions of the electric field at
all different frequencies in the frequency band.

However, the far-field statistical parameters listed above
can be computed from the near-field statistical parameters.
Thus, pulsed antennas characterization does not require
knowledge of any additional statistical near-field data.

(4) The probability density function (p.d.f.) for the far-field
electriL fields of cor-elated random sources or scatterers
can be accuxately approximated for most antenna or scattering
problems via the use of NakaSgmi's p.d.f. and linear operator
theory. A le3$ accurate but rclatively simple expression for
the p.d.f. was also derived that is suitable for certain
engineering applietions.

Task 2. Theorecicall) relate the radiation pattern

characterization to the basic data needed for efficient optimization

analysis if electromagnetic spectrum usage. The objective of this task

was to relate the near-field derived videband antenna characterization

to antenna coupling of antenna systess which co-eAist in the saw. EN

environment.
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The efforts on this cask were devoted to deriving approximate but

accurate coupling prediction equationt.. Three different techniques for

coupling analysis were considered. These three techniques are denoted

respectively as (1) Plane Wave Spectrum (IWS), (2) Spherical Spectrum

Wave (SWS), and (3) the Geometrical Theory of Diffraction (GI). Most

of the research efforts were devoted toward development of the PUS

technique. Multiple scattering effects are not addressed in the

analysis. However, multiple scattering effects can be approximately

analyzed if the scattering matrix of each antenna is specified from

theory or measurements. Theory and equations for the PWS, SWS, and GTD

approaches were presented and discussed. Results of numerical

simulations using the PWS approach for analyzing antenna coupling are

also presented. The GTD technique for deterministic antenna analysis

was adapted to yield comparatively simple equations for certain classes

of antenna coupling problems.

The analyses for this task were conducted in the frequency domain.

The primary goal was to obtain equations valid over wide frequency

bandwidths. The time domain response can then be obtained by

numerically computing the Fourier Transform of the frequency domain

equations. The wideband frequency response of swept CW radiating

systems is then characterized by numerically computing the frequency-

averaged pattern and standard deviation.

Task 3. Provide the methodology to assess the effects of system

devices (i.e., higher-order mode generation) on the radiation patteri.

The two main objectives for this task were (1) to develop a method for

analyzing the antenna pattern effects of higher order modes generated

and/or propagated by common feed system devices and (2) to assess the

feasibility of deducing the mode excitations for a radiating feed

syatem from analysis of measured out-of-band pattern data.

Equations were derived during Task I and Task 2 to permit the out-

of-band radiation pattern statistics to be computed from a knowledge of

the system ,ievice statistics which describe the higher-order mode

generation and propagation. Theory and equations for identifying the

higher-order mode excitations of a feed containing passive and/or

active waveguide devices through utilization of wideband or pulsed

near-field measurements were also derived.
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The timely completion of the required research work for this task

permitted a brief $igression into another important aspect of the out-

of-Land response of system devices. In particular, equations were

sought to describe the influence of particular waveguide devices on the

excitation and subsequent propagation of out-of-band waveguide modes.

Three waveguide devices were considered in this exploratory study,

namely (1) coax-to-waveguide adapters, (2) radial bends, and (3) ferrite

phase shifters. Program constraints precluded a detailed quantitative

analysis of all three kinds of devices. Accordingly, the research
efforts were concentrated mainly on the theoretical and numerical

analysis of a coax-to-waveguide adapter.

Task 4. Investigate the impact of site effects on the near-field

antenna analysis technology. The objective of this task was to extend

the existing monuchromatic mpectrum scattering matrix analysis to study

antenna siting effects on the wideband and out-of-band performance of

radiating systems.

A theoretical study was performed to investigate techniques and

derive the equations for extending the existing monochromatic spectrum

scattering matrix theory to analyze site effects over wide frequency

bandwidths. In particular, frequency domain equations were derived via

the Plane Wave Spectrum Scattering (PWSS) technique. The pulse

envelope responsc is obtained froc the Fourier Transform of the

frequency domain NWSS equations. Based upon the results of the

theoretical study, a numericaL simulation of the siLe effects on the

wideband in-band and out-of-band performance of a pulsed radiating

system was performed for a reflector antenna partially blocked by a

round metal cylinder located in the antenna's near-field.

B. Recoasmendations

The results of the research work conducted for this basic research

program significantly advance the state of knowledge concerning near-

field wideband in-band and out-of-band radiation and/or scattering

phenomena. However, further advancer can and should be made through

additional research work. Accordingly, reconedations for further

research work are presented herewith;
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Task 1.

(a) Conduct theoretical and numerical analyses to derive a
reliable, accurat, practical method to compute the near-
field covariance functions from the near-field data
obtained from a single probe.

(b) Conduct theoretical and numerical analyses to derive the
probability density function for correlated sources or
scatterers.

'c) Conduct theoretical and nurerical analyses to derive the
inter-element coupling and covariance functions for a
multimoding array of out-of-band wavegatide elements.

(d) Conduct near-field measurements for a multimoding waveguide
array to provide validation data for item (c).

Task 2.

(a) Conduct theoretical and numerical analyses to derive antenna
coupling model(s) that are valid for arbitrary orientations
and locations of in-band as out-of-band wideband cw or pulsed
reflector antennas in the presense of environmental
scattering obstacles.

(b) Conduct near-field antenna coupling measurements in the
presence of selected scatzering obstacles in order to
provide validation data for item (a).

Task 3.

(a) Conduct theoretical and numerical analyses to device improved
approximpte methods for computing the higher-order mode
excitations and propagation constants for common waveguide
components such as radial bends, ferrite phase shifters,
coax-to-waveguide adapters, and waveguide rotary joints.

(b) Conduct near-field measurements for multimoding feed systems
to generate validation data for item (a) and to provide
insight into realistic mode excitations encountered in
real-world feed systems.

Task 4.

(a) Conduct theoretical and numerical analyses to derive
simplified expressions for making rapid but accurate
approximate analyses of the wideband cw or pulsed response
of reflectors or phased array antennas that are partially
obstructed by one or more near-field obstacles.
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(b) Conduct experiments to measure the wideband cw or
pulsed response of partially blocked antennas to
provide validation data for item (a).
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